
Demonstrating the Ability of Elementary School Students
to Reason about Programs

Ashish Aggarwal
Computer & Info. Science

& Engineering
University of Florida
Gainesville, FL 32611
ashishjuit@ufl.edu

David S. Touretzky

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
dst@cs.cmu.edu

Christina Gardner-McCune

Computer & Info. Science
& Engineering

University of Florida
Gainesville, FL 32611

gmccune@ufl.edu

ABSTRACT

Over the last decade, CS Education researchers have developed
different curricula, resources, and strategies to foster computer
science learning in K-12 education. However, there is a lack of
research about how elementary school students develop the
ability to reason about programs. Reasoning about programs
consists of a student’s ability to read, write, debug, trace, and
predict program behavior. This paper presents results from a
think-aloud study of fourth and fifth grade students learning to
program in Kodu. The goal of this study was to track students’
understanding of how Kodu interprets and executes rules of a
program. To understand students’ reasoning of program
execution, we explicitly taught them the Laws of Kodu
computation which govern the decision making and execution
process of Kodu rules. We collected students’ responses on pre-
and post-assessments, and we conducted think-aloud interviews
with students where students explained their answers to
assessment questions. We found that explicitly teaching students
how Kodu rules are interpreted significantly improved their
ability to understand the execution of programs and to explain
program behavior. The results of this study provide insight into
how elementary school students reason about simple programs,
and how this ability can be scaffolded.

ACM Reference format:

Ashish Aggarwal, David S. Touretzky, and Christina Gardner-McCune.
2018. Demonstrating the Ability of Elementary School Students to
Reason about Programs. In SIGCSE ’18: 49th ACM Technical Symposium
on Computer Science Education, Feb. 21–24, 2018, Baltimore, MD, USA.
ACM, NY, NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159488

1 INTRODUCTION
Visual programming environments such as Alice [4] and Scratch

[13] have been successful in introducing programming to
younger students and overcoming the barriers inherent in
learning text-based programming languages. Often curricula
associated with visual programming environments focus on
engaging students in the development of creative artifacts as a
mechanism for teaching CS concepts to students [13]. These
programming environments scaffold students’ abilities to learn
programming and support artifact design by minimizing the
syntactical complexities of programming and hiding how
programs are compiled and executed [7] [12].

As K-12 computer science teaching becomes more
common, the number and range of programming environments
will continue to expand. Thus, there is a growing need to help
students and teachers transfer their knowledge of programming
across these environments. One way to support programming
knowledge transfer across environments is to develop students’
ability to reason about programs. Reasoning about programs
requires students to develop the ability to read, write, debug,
mentally simulate (trace), and predict program behavior [2] [8]
[9]. Underlying this ability is an inherent understanding of how
programs are compiled/interpreted and executed. Mastery of
these skills will help students increase their programming
proficiency and better understand how programs work. Despite
the importance of cultivating program reasoning ability, there is
a lack of research on the development of students’
understanding of how computers execute program instructions.

In this paper we describe the results of a think-aloud study
conducted to track the development of elementary students’
program reasoning ability in Microsoft’s Kodu Game Lab. The
findings describe students’ abilities to read programs and to
explain and predict program behavior. This paper aims to
address the gap in the literature about how elementary students
reason about programs.

2 NOVICE PROGRAMMERS
Over the past three decades, CS Education researchers have
studied the skills novice programmers need in order to become
proficient in programming and the challenges novice
programmers have in understanding and reasoning about
programs [3] [11] [15]. Several researchers have suggested that
composing and coordinating different pieces of code and
“putting the pieces together” is a major problem for novice
programmers [17][18]. Thus, Deimel [5] argued that code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGCSE '18, February 21–24, 2018, Baltimore, MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02…$15.00
DOI: https://doi.org/10.1145/3159450.3159488

mailto:Permissions@acm.org

reading is as important as code writing. Sheard et al. [14] found
that a student’s ability to explain programs positively correlated
with their ability to write code. Moreover, they found that
program explanation plays an important role in the development
of novices’ conceptual understanding of program construction.
Research by Lister et al. highlighted that students’ code tracing
ability is dependent on their code explanation ability and
confirmed that “students who cannot trace code usually cannot
explain code” (p. 161) [10]. Conversely, they found that “students
who tend to perform reasonably well at code writing tasks have
usually acquired the ability to both trace code and explain code”
(p. 161) [10].

Perplexed by the challenges that novice programmers face,
Soloway [16] suggested that they need to be taught effective
reasoning strategies and that “learning to program amounts to
learning how to construct mechanisms and how to construct
explanations” (p. 851) [16]. Most recently, Guzdial [7] suggested
that development of a robust “notional machine”, e.g, mental
model of how programming environments work [6], will help
students understand how programs work and improve their
ability to read, write, trace, and understand programs. This paper
aims to provide examples of how elementary school students
reason about programs in a visual rule-based language, Kodu.

3 KODU

3.1 Microsoft’s Kodu Game Lab
Kodu Game Lab is a visual programming language made
specifically for 3D game development. It is designed to be
accessible to children and enjoyable for anyone. It provides
students with a 3D world to visualize the behavior of their
programs and a rule editor to design and rapidly iterate on their
programs. Kodu uses WHEN-DO semantics where the WHEN-
part represents the predicate, or the condition and the DO-part
represents the action. Kodu rules are conditional statements
which are represented in sequences of tiles, e.g., objects,
perceptions, and actions. Fig. 1 shows the first design pattern
students learn in the Kodu curriculum which is Pursue and
Consume (P&C). This is the 'Hello World' program of Kodu. The
P&C design pattern programs a character to move toward the
closest object that satisfies the rule (e.g., "WHEN see apple DO
move toward"), and to consume it upon contact (e.g., "WHEN
bumped apple DO eat it") [22].

Figure 1: Flashcard showing the Pursue and
Consume idiom/design pattern.

Kodu simplifies learning to program by narrowing control
structures available to students to evaluation of conditional
statements. Mastery of Kodu programming thus can help
students to better understand conditionals and if-then and while
programming constructs. Moreover, since Kodu is an event-
driven language, students are exposed to even-driven concepts
of programming in a simplified manner [19][23].

3.2 Kodu Curriculum & Laws of Kodu
Building off simple Pursue & Consume programs, the Kodu
curriculum developed by Touretzky [20] focuses on helping
students to understand, reason about, and predict program
behavior through explicitly teaching students the first three
Laws of Kodu computation. The curriculum, provides students
with visual representations of the Laws of Kodu on refrigerator
magnets, animated videos, and activity worlds to help students
explore and reason with the Kodu laws.

Figure 2: The refrigerator magnets showing the 2nd (left)
and the 3rd (right) Laws of Kodu

Overall, the graphics on the refrigerator magnets of these
laws are designed to build students’ understanding of how these
laws will be applied in Kodu [20]. The first Law of Kodu is one of
the simplest ways we introduce students to program behavior
and prediction. The 1st Law of Kodu says that “Each rule picks the
closest matching object.” In the context of a pursue and consume
program, this mean that if the kodu can see more than one apple,
it will pick the closest one.

The 2nd Law of Kodu (Fig. 2-left) explains how the execution
of rules takes place in Kodu. It says, “Any rule that can run, will
run” which means that rules in Kodu run in parallel. In Kodu, if a
rule’s WHEN-condition is true and evaluated, it will run. This is
because every rule in Kodu is evaluated 50 to 100 times per
second to check if it can run or not [21]. The 2nd Law of Kodu
helps students learn how to trace programs that have parallel
execution, which is similar to Scratch program where multiple
objects/events execute in parallel. The 3rd Law of Kodu helps
students resolve conflicts that arise between rules. Conflicts
occur when their WHEN-conditions are simultaneously true but
their corresponding DO-action statements are incompatible.
When rules conflict in this way, students are expected to use the
3rd Law of Kodu (Fig. 2-right) which says, “When actions conflict,
the earliest wins” to understand which action will run. Thus,
when conflict arises, the rule which is earlier (lower-numbered)
will be executed. The 3rd Law of Kodu help students develop
skills for reading programs and recognizing when rules might
conflict and then use the law to interpret program execution and
behavior while tracing the program.

Through Touretzky’s [20] Kodu curriculum, students initially
discover the Laws of Kodu by reasoning about the behavior of
kodu characters that are executing simple pursue and consume
programs in various Kodu worlds [1]. For example, a program
facilitator might ask students to program a kodu character in a
simple world filled with apples and ask students to guess which
apple the kodu will pursue and why. The facilitator might then
ask students to move the kodu around and to predict which
apple the kodu will eat. Overtime, students start discovering
patterns in how the character selects which apple to eat first.
Then, the students are given the relevant Law of Kodu magnet
and discuss a range of applications of the laws through watching
animated instructional videos for the 1st and 2nd Laws. As
students practice applying the laws they improve their ability to
understand the execution of programs and their ability to
explain program behavior. Our goal by the end of the curriculum
is for students to be able to refer to, state and apply the laws
correctly.

4 RESEARCH STUDY
In this paper, we focus on demonstrating how students use laws
to reason about simple 2-4 rule Kodu programs. Critiques of
prior Kodu work focus on the age-appropriateness of teaching
students to reason about programs. Thus, in this paper we
explore the following research question: To what extent are
elementary students able to reason about programs? Consistent
with a constructivist theory of learning [24], we believe that all
students are capable of learning to program and reason about
programs when given appropriate tools. Therefore, we
hypothesize that students who understand the laws will be able
to refer to, state and apply the laws correctly when explaining
program execution and behavior. Thus, in this study, we
examine the ability of students to read code, explain the meaning
and the behavior of the code and trace it. Based on this evidence
we evaluate the overall state of elementary school students’
reasoning ability.

4.1 Study Design
This study has two main components: (1) an instructional
intervention where we taught students the Kodu curriculum and
observed their reasoning during class sessions and (2) a think-
aloud interview where students either retrospectively explained
their reasoning on assessments or verbally walked through their
reasoning as they solved problems with the interviewer. The
results of this study will allow us to (1) evaluate the influence of
explicit teaching of laws in developing students’ correct
reasoning, (2) gain a better understanding of students’ ability to
predict and explain program behavior, and (3) examine the
overall capability of students to reason about programs.

 4.1.1 Instructional Intervention-Session Overview. In this study,
we created a 4-session curriculum adapted from Touretzky’s [20]
Kodu curriculum focused on scaffolding students’ learning to
reason about 1-4 rule program variations of the pursue and
consume design pattern. The intervention was conducted over 4
consecutive weeks. Program participants attended one 90-minute

 instruction session each week. Each session introduced one of
the first three Laws of Kodu and evaluated students’ reasoning
based on their understanding of the law and its application in
combination with previous laws.

Session #1, introduced students to the semantics of Kodu
rules and the 1st Law of Kodu. In the think-aloud study, we
measured students’ ability to use the 1st law to simulate and
predict program behavior. Session #2 introduced students to the
2nd Law of Kodu. Session #3 introduced students to the 3rd Law
of Kodu. By the end of the third session we expected students to
be able to recognize and use the Pursue and Consume design
pattern. We also expected students to be able to state the laws,
recognize appropriate times to apply the laws, reference laws
when reasoning about the execution of a program, use the laws
to mentally simulate 2-rule and 3-rule programs, and predict
program behavior. In session #4, students were asked to use the
P&C design pattern to build a game of their own choice.

4.2 Methodology
We conducted four ninety-minute sessions after school with
three groups of six participants each. In each session,
participants completed paper-based pre & post assessments
based on the content covered in the session. The assessments
were focused on recognition of laws and idioms, students’
understanding and simulation of the rules, and prediction of
program behavior. After each student completed their
assessment, students were asked to participate in a think-aloud
interview. In each of the think-aloud interviews, students were
asked to read the question aloud, to explain the meaning of the
question, and then to reason about their answer. The
interviewer asked students to explain why they chose an
answer option or rejected other options. The interviewers were
also instructional intervention facilitators, so students were
comfortable in sharing their ideas.

4.3 Participants
Eighteen 4th and 5th grade participants were recruited from a
local elementary school. Interested students were given flyers
and completed interest forms to voluntarily sign up for the
study. An information session was conducted for parents and
students to provide them with details about the study and Kodu.
We received parental consent and student assent for each
student to participate prior to the start of study. The eighteen
recruited students were divided into one of three groups based
on their schedule availability. By chance, every group ended up
having six students with four boys and two girls. Seven
students were from fourth grade and eleven students were from
fifth grade. 16 out of 18 students indicated that they had prior
programming experience while the remaining two did not. All
eighteen students indicated that they completed Hour of Code
activities, while varying number of students indicated using
other programming environments such as Code Monkey (n = 1),
HTML and JavaScript (n = 5), Kodu (n = 1), Minecraft (n = 3),
Python (n = 1), Scratch (n = 3), Vex Robotics or Lego (n = 3),
Other (n = 3).

4.4 Data Collection and Analysis
Data was collected using pre-and post-assessments and think-
aloud interviews. During session 1, students completed post-
activity assessments and think-aloud interviews. During session
2 & 3, students were given pre- and post-assessments where they
were asked questions on the focal Kodu law of the day. The pre-
assessments allowed us to collect data on how students reason
before they were taught the law and helped us understand the
default reasoning patterns of students. Audio and video
recordings of the think-aloud study were captured, transcribed,
and analyzed by the researchers.

We qualitatively analyzed student responses to questions
from the pre- and post-assessments and think-aloud interviews.
We listened to the audio of all the participants’ think-aloud
interviews and then noted down three aspects of students’
responses: (1) whether the participants correctly answered the
questions; (2) evidence the participant referred to, stated, or
applied one or more Laws of Kodu in solving the problem or
explaining their solution to the problem; and (3) whether the
participant used the laws correctly when explaining their
reasoning. We then calculated the number of participants who
correctly answered the questions, and the number of students
who referred to, stated, and/or applied the laws. We transcribed
audio from a representative sample of the think-aloud
conversations between researchers and students to highlight
how students exhibited their knowledge and application of the
laws as evidence of their reasoning.

5 FINDINGS
Overall, our analysis of students’ think-aloud interview data
shows that students can refer to, state and apply the laws
correctly when reasoning about programs. In this section, we
will discuss evidence for this claim using examples from the
think-aloud interviews that followed session 1, 2 and 3. These
examples highlight how students directly referred to or stated
the 1st, 2nd and the 3rd law while explaining their reasons for
selecting answers when asked to predict the behavior of a
program.

Q10. Look at the three kodus below. One of them is obeying the First
Law of Kodu when it runs the following rule. Which one is it? Circle
the obeying Kodu.

 A)

 B)

 C)

Figure 3: Session 1, Q10 think-aloud question.

5.1 Session 1 – 1st Law of Kodu
During session 1, students were asked questions related to the
execution of simple pursue and consume rules. Below is an
example from the think-aloud conversation where a student
describes his/her understanding of the 1st law while solving Q10
(Fig. 3). Q10 asks students to consider the pursue rule provided
and three possible scenario options and asks them to select the
option where kodu is obeying the 1st Law of Kodu. Option C is
the correct answer because kodu always goes to the closest
matching object in the rule, which in this case is a star.

Interview Transcript 1: Student A explained the meaning
of the 1st Law of Kodu

Context: Student indicates that the kodu will go to the closest
object (star) because that is the “rule”
Interviewer: What rule [law] is that? Do you remember?
Student A: “I don’t remember, but I know what it means”
Interviewer: So, what does it mean?
Student A: “It means to always go to the nearest, well kodu is
supposed to go to the nearest star, apple, heart whatever, so yes it is
supposed to go to the nearest one not the farthest one”

This transcript shows that Student A is able to correctly explain
the 1st law and what it means. Student A is also able to
generalizes the application of the law to multiple objects not just
apples which is the example case used to teach students the 1st
law and how it works. Overall, 13 out of 18 students marked the
correct option C on Q10. During the think-aloud interviews 10
out of the 13 students directly stated or referred to the 1st law in
their explanations. This indicates that students are able to refer
back to and apply the 1st law. This transcript is representative of
the capability of 10 out of 18 students to correctly reason about
the choices they made when reading the Kodu programs.

5.2 Session 2 - 2nd Law of Kodu
5.2.1 Session 2, Think-aloud Question 3. During the session 2
think-aloud interview, students were given Q3, a reverse pursue
and consume program (Fig. 4), and asked to consider "what will
these rules do?" Q3 was designed to assess students' conceptual
understanding of the program's behavior.

Q3. What can these rules do?

A) They can pursue and consume all the hearts
B) They cannot do anything as the pursue rule is below
the consume rule
C) These rules make no sense
D) They can do random stuff

Figure 4: Session 2, Q3 reverse pursue and consume think-
aloud question.

The correct answer to this question (Fig. 4) is option A- “they
can pursue and consume all the hearts.” This option is correct
because the 2nd Law of Kodu says that “any rule that can run,
will run." which suggests that the order of pursue and consume
does not matter (Fig. 2, left). 14 out of the 16 students, marked
the correct option A.
 Interview transcript #2 provides Student B’s explanation for
choosing option A and shows the student directly referencing
and stating the 2nd Law of Kodu while explaining their answer
selection (Fig. 4).

Interview Transcript 2: Student B directly referred to the
2nd Law of Kodu

Interviewer: Why did you mark option A?
Student B: “because even though this [pursue rule] is below the
top one [consume rule], it [pursue rule] can still follow that rule
[consume rule] because that’s the second rule [law] of kodu"

This transcript shows that Student B is able to point to the
pursue and consume rules individually, comment on their
current order in the program, and attribute the working program
to the 2nd Law of Kodu. This suggests that Student B knows that
even though the order of the rules is switched in the program, it
will still work as intended. Student B’s response is consistent
with 11 out of 14 students who also correctly answered this
question and directly stated or referred to the 2nd Law of Kodu
while explaining their reason for selecting option A. The
remaining 3 explained their reasoning by correctly applying 2nd
Law of Kodu but did not explicitly refer to the 2nd Law of Kodu.

5.2.2 Session 2, Think-aloud Question 5. In Q5 (Fig. 5), a
subsequent question about reverse pursue and consume rules
was given in context of a kodu world and students were asked to
predict the kodu’s behavior. The correct answer is option C
which states that “kodu will pursue and consume all the coins as
the order of pursue and consume does not matter.” 15 out of the
16 students answered correctly by marking option C.

Q5. In the world above, what would the Kodu do with the given rules?

A) Kodu will not move as the consume rule is above the
pursue rule
B) Kodu will bump the coin first and then pursue the
nearest coin
C) Kodu will pursue and consume all the coins as the
order of pursue and consume does not matter
D) Kodu will do random stuff

Figure 5: Session 2, Q5 think aloud question

Interviewer Transcript 3: Student C directly referred to the
2nd Law of Kodu and explained it

Context: At the beginning of a week two interview
Interviewer: What did you learn today?
Student C: “I learned today that it doesn’t matter which rule is
first, it matters which rule works, so if the first rule is WHEN bump
apple eat it and the second rule is WHEN see apple move toward,
the second one will work instead of the first one”
Interviewer on Q5: What is the correct answer?
Student C: “I think it is C…because it is the Law of Kodu number
2, the second Law of Kodu is whatever can run will run so it (kodu)
would go when it would see coin and when it sees coin it will move
toward it and then the second law will go in and then when it
bumps the coin it will eat it”

This transcript demonstrates that Student C understood the 2nd
Law of Kodu and that he/she was able to apply it when
reasoning about the behavior of a kodu character in a game
context. This transcript is consistent with 9 out of 15 students
who correctly answered this question and also directly referred
to or stated the 2nd Law while explaining their reason for
choosing this option. The other 6 students said that rule ordering
will not matter which is a correct application of the 2nd Law.

5.3 Session 3 – 3rd Law of Kodu
During the session 3 think-aloud interview, students were given
Q14 (Fig. 6), a 3-rule program: (1) consume apple rule, (2) pursue
blue apple rule, and (3) pursue red apple rule. Students were
asked to trace the path of kodu given 2 red and 2 blue apples
scattered in front of kodu. Application of the 3rd Law of Kodu
results in the kodu eating all the blue apples and then the red
apples.

Q14. Here is another Kodu program for eating apples. Draw the path
and write a number next to each apple to show the order in which the
apples will be eaten.

Figure 6: Session 3, Q14 think aloud question

Interview Transcript 4: Student D refers and states the 3rd
Law of Kodu

Context: Student D explains why he/she marks a path in which
the kodu first eats all the blue apples and then the red apples.
Interviewer: Why did you choose the blue apple first even if the
red one is closer?
Student D: “Yea, but the second one [pursue-blue-apple rule] is
true and the first one [consume-apple rule] is not. [Pointing to
second and third rules] these are both true, and like the 3rd Law of
Kodu, it follows when the actions conflict, the earliest one goes”

This transcript shows that student D was able to evaluate each of
the three rules in the program, describe when a rule was eligible
to run, and understood how to correctly apply the 3rd law to
predict the path of kodu.

6 DISCUSSION
The results of this paper demonstrate that 4th and 5th grade
students were able to refer to, state, and apply the three Laws of
Kodu when reasoning about 1-3 rule programs. In addition, these
results demonstrate that students were frequently using laws to
predict program behavior, justify their answer choices, and to
explain their reasoning. This suggests that the Laws of Kodu
provided students with the conceptual framework and
vocabulary to explain the behavior of rules in a program and to
predict the resulting behavior of the program when executed.
We believe this is due to the concise and simple language of each
rule and the use of the animated simulations of the laws to
explain when to apply them. These results also indicate that
teaching 4th and 5th grade students to understand how
programming statements are interpreted and executed is age-
appropriate and easily accomplished when scaffolded.

7 CONCLUSION
As elementary school students are increasingly engaged in
learning to program, it is important to help them understanding
how to read and understand programs written by themselves
and others. In addition, it is important to help them understand
the underlying mechanism by which programs are interpreted
and executed by computers. Our findings show that when
elementary school students are explicitly taught the Laws of
Kodu computation, they can read and understand programs
written by others and predict the behavior of these programs.
Reasoning about programs in this way has the potential to help
students improve their ability to read and comprehend programs
and transfer this knowledge across programming environments.
While the Kodu environment and its semantics may be different
from other environments, we believe curriculum designers for
other environments can scaffold students’ abilities to reason
about programs by providing explicit instruction on the
computational laws underlying the programming frameworks.

ACKNOWLEDGEMENTS
We would like to thank Joseph Isaac and Ashley Cahill for their
assistance in conducting the study and all the participants for
their time. This work was supported by a gift from Microsoft
Research.

REFERENCES
[1] Aggarwal, A., Gardner-McCune, C., & Touretzky, D. S. (2016). Designing and

Refining of Questions to Assess Students' Ability to Mentally Simulate
Programs and Predict Program Behavior. In Proceedings of SIGCSE '16, (pp.
696-696). Memphis, TN: ACM

[2] Chmiel, R., & Loui, M. C. (2004). Debugging: from novice to expert. ACM
SIGCSE Bulletin, 36(1), 17-21.

[3] Clancy, M. (2004). Misconceptions and attitudes that interfere with learning
to program. In S. Fincher & M. Petre (Eds.), Computer Science Education
Research (pp. 85-100). Abingdon, UK: Taylor & Francis.

[4] Dann, W. P., Cooper, S., & Pausch, R. (2011). Learning to Program with Alice
(w/CD ROM). Prentice Hall Press.

[5] Deimel Jr, L. E. (1985). The uses of program reading. ACM SIGCSE Bulletin,
17(2), 5-14.

[6] Du Boulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass
box: presenting computing concepts to novices. International Journal of Man-
Machine Studies, 14(3), 237-249.

[7] Guzdial, M. (2015). Learner-centered design of computing education:
Research on computing for everyone. Synthesis Lectures on Human-Centered
Informatics, 8(6), 1-165.

[8] Kollmansberger, S. (2010). Helping students build a mental model of
computation. In Proceedings of the fifteenth annual conference on Innovation
and technology in computer science education (pp. 128-131). ACM.

[9] Kumar, A. N. (2013). A study of the influence of code-tracing problems on
code-writing skills. In Proceedings of the 18th ACM conference on Innovation
and technology in computer science education (pp. 183-188). ACM.

[10] Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship
between explaining, tracing and writing skills in introductory programming.
ACM SIGCSE Bulletin 41(3), 161-165.

[11] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.
B. D., Laxer, C., Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national,
multi-institutional study of assessment of programming skills of first-year CS
students. ACM SIGCSE Bulletin, 33(4), 125-180.

[12] Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer
science concepts with Scratch. Computer Science Education, 23(3), 239-264.

[13] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner., A., Rosenbaum, E., Silber, J., Silverman, B., & Kafai, Y
(2009) “Scratch: Programming for everyone.” Communications of the ACM
52(11), 60-67.

[14] Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., & Whalley, J. L.
(2008). Going SOLO to assess novice programmers. ACM SIGCSE
Bulletin 40(3), 209-213.

[15] Sirkiä, T., & Sorva, J. (2012). Exploring programming misconceptions: an
analysis of student mistakes in visual program simulation exercises.
In Proceedings of the 12th Koli Calling International Conference on Computing
Education Research (pp. 19-28). ACM.

[16] Soloway, E. (1986). Learning to program= learning to construct mechanisms
and explanations. Communications of the ACM, 29(9), 850-858

[17] Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms
correct?. Communications of the ACM, 29(7), 624-632.

[18] Spohrer, J. G., & Soloway, E. (1986). Analyzing the high frequency bugs in
novice programs. In Papers presented at the first workshop on empirical studies
of programmers on Empirical studies of programmers (pp. 230-251). Ablex

[19] Touretzky, D. S. (2014). Teaching Kodu with physical manipulatives. ACM
Inroads, 5(4), 44-51.

[20] Touretzky, D. S. (n.d.). Kodu Curriculum Modules. Retrieved July 26, 2016,
from https://www.cs.cmu.edu/~dst/Kodu/Curriculum/

[21] Touretzky, D. S. (n.d.). Kodu Idiom Flash Cards & Tiles. Retrieved July 26,
2016, from https://www.cs.cmu.edu/~dst/Kodu/

[22] Touretzky, D. S., Gardner-McCune, C., & Aggarwal, A. (2016). Teaching
Lawfulness With Kodu. In Proceedings of SIGCSE '16 (pp. 621-626). Memphis,
TN: ACM.

[23] Touretzky, D. S., Gardner-McCune, C., & Aggarwal, A. (2017). Semantic
Reasoning in Young Programmers. In Proceedings of SIGCSE ‘17 (pp. 585-590).
Seattle, WA: ACM.

[24] Wadsworth, B. J. (1996). Piaget's theory of cognitive and affective
development: Foundations of constructivism. Longman Publishing.

