
Can Natural Language Acquisition Theory Inform How
Students Learn To Program?

José Alejandro Cabrera1 and Ashish Aggarwal2

1Dept of Comp. & Info. Science and Engineering, University of Florida
2Department of Engineering Education, University of Florida

Abstract
Second Language Acquisition is a field of Linguistics that studies how humans learn additional

languages after their early years. This field is heavily tied to cognitive science and has focused
on both the neurological and pedagogical aspects of language acquisition. Over the years, studies
have focused on acquisition models that have enhanced the way we teach and learn languages.
Naturally, these findings can also be applied to other disciplines and be contextualized within their
areas of knowledge.

Programming and natural languages share design features in various areas such as their foun-
dations, syntax, and semantics. Comparing the nature of both types of languages is key to have a
deeper understanding of the acquisition models that both fields have developed over time. More-
over, analyzing the way learning works in the context of both programming and natural languages
can yield potential improvements on effective language learning through improved instruction and
pedagogy.

This paper describes and explores the similarities and differences of programming and natural
language acquisition based on their foundations, syntax, and semantics. These comparisons give
a theoretical foundation for a further analysis of the similarities and differences in acquiring pro-
gramming and natural languages. Several key points are highlighted, backed by acquisition theory
and other studies; namely in the context of acquisition stages, learning components, factors and
elements that benefit or hinder the acquisition process, etc. Likewise, several elements that differ
between both models are emphasized, namely those that have different context when applied to
programming or natural languages, respectively.

All these findings give rise to several implications that connect back to practices that may
enhance the way knowledge is imparted on both fields, especially at early stages of acquisition.
Various study-backed recommendations are also listed in order to provide more effective methods
of teaching introductory courses in Computer Science, highlighting the inherent advantages of the
field as well as covering some weaknesses that teaching the subject can have.



1 Introduction
Language learning has been a topic of interest for many researchers throughout the past decades.

[1, 2, 3] Factors like technological advancements and the sudden shift towards globalization in the
modern world have enabled the field of Linguistics to study the intricate process of language ac-
quisition and its neurological, psychological, and pedagogical aspects. Language acquisition is
still a developing branch of Linguistics, lacking strong conclusive results on several research ques-
tions, such as the extent of bilingual advantage [4], the nature of code-switching [5], etc. However,
various models of language learning [6] have been developed, with similar factors and stages of
development.

The increasing economic value of multilingualism in modern society has increased the demand
for language learning across the globe. [7] Likewise, the rising accessibility of resources such as
applications like Duolingo, Babbel or contact with native speakers through written and/or spoken
communication platforms (WhatsApp, Skype, etc.) has given people more means to use, practice,
and learn a foreign language; whether as a hobby or as a necessity.

Parallel to this, in the field of Computer Science, various programming languages have been
developed throughout the decades as a tool for software development and problem-solving. It is
common for a software developer to eventually acquire multiple programming languages (often re-
lated to functionality, e.g., frontend, backend, mobile app development, etc.). This necessity makes
the effective acquisition of various programming languages a useful asset for those working in the
field. Improvements in the way introductory courses teach the basics of programming and the
approaches that instructors use to achieve this goal could be essential for future generations of
learners [8].

Since programming languages behave similarly to their natural homologs, there is a need to
analyze how humans acquire both types of languages. Making a cross-comparison between their
foundations, elements, and acquisition could be a useful tool to understand how do we learn to
program. This comparative analysis can be supported by the research that has been done for both
types of languages in isolation. Ultimately, this has the potential to inform about additional charac-
teristics of language learning, which can influence the acquisition processes of both programming
and natural languages.

2 Theoretical Framework
It is crucial to establish the areas of comparison to structure a further discussion on the ac-

quisition models. A linguistic approach to this task would be to divide each section according
to the level of complexity of the structure. That is, going from the foundations of the language
to their phonology (set of sounds), morphology (word building and classification), syntax (the
grammatical interaction between words and word classes), semantics (the logical meaning em-
bedded on sentences), and pragmatics (the way context contributes to meaning). It is worth noting
that some branches will have little to no comparison due to the nature of programming languages:
for example, since programming languages were never meant to be spoken, they lack any phonol-
ogy. Likewise, morphology and pragmatics in programming languages work very differently from
their natural language homologs, making their comparison an extended discussion, rather than a
one-to-one analysis.



This structure leaves us with three major areas to analyze: the foundations, syntax, and se-
mantics of the languages. The discussion of these branches will give us enough understanding of
the nature of both types of languages to lay the groundwork for a major analysis of their acqui-
sition, which is a topic linked to their application. Table 1 briefly lists significant similarities and
differences in the areas of study, as mentioned above with respect to both programming and natural
languages.

Sub-field Similarities Differences
Foundations Primary purpose: communi-

cation and shaping of think-
ing.

The difference in the recip-
ient (human to human ver-
sus human to machine).

Family trees and language
variation present in both
types of languages

Variation in programming
languages showing additional
non-linguistic functionality.

Syntax Shared rules and syntactic
analysis (word classes, sub-
ject/predicate, etc.)

Word classes are grouped
for function in program-
ming languages (instead
of grammatical category)

Semantics Compositional semantics
work similarly (sentences as
a sum of propositions)

Lexical semantics absent in
programming languages

Lack of ambiguity and
double meaning in program-
ming languages’ semantic
interpretation

Table 1: Similarities and differences of the foundations, syntax, and semantics of programming
and natural languages.

2.1 Foundations
Fundamentally, both natural and programming languages exist for communication. Natural

languages were developed as a tool for interaction between members of a community, conveying
necessary information for complex coordination and survival techniques. Also, humans used lan-
guages as a tool for transmitting knowledge from older to newer generations without first-hand
experiences through storytelling and physical documentation (i.e., written languages). Similarly,
programming languages were developed as a bridge between human and machine interaction:
something that would facilitate the integration of computing into everyday life. Without a way
to make low-level machine code intelligible for computer scientists, it would be nearly impossible
to build the information structures humans have today.

Likewise, both types of languages shape the way we think. Natural languages gave humanity



a way to take abstract thoughts and describe them in a way that can be understood by others
(given that both speaker and recipient speak the same language). Programming languages, on the
other hand, were the bridge for the application of computational thinking (from an abstraction of
problem-solving ideas to automation of the algorithms needed to perform a given task) [8].

This distinction of the intended recipient is what draws the most differences between the types
of languages (Figure 1). Computers are limited to interpret the data as a set of instructions, whereas
humans can convey and understand emotions, beliefs, and ideologies through language. Similarly,
natural languages emerge as a necessity to interact with other humans: a study known as the “Con-
ditioned Head Turn Procedure”, demonstrates how a child’s brain can recognize speech patterns
from the earliest stages of their life [9]. Compared to learning a natural language, learning to code
may not be an essential part of every human’s life. It is essential to highlight this feature, as other
differences that are present in both types of languages (which we will discuss in further sections)
are derived from a change in the recipient.

Figure 1: Foundational difference of programming and natural language regarding the intended
recipient

Another fundamental nuance between both types of languages is the relationship within lan-
guage families. Language variation is a process in which small changes in a given language lead to
what is referred to as “dialects” or “accents” [10]. As these differences widen due to historical and
anthropological circumstances, new languages eventually emerge, being linked by a common an-
cestor (which, by the time this happens, is usually not spoken anymore). A way to group languages
that derive from the same common ancestor is by using language families. For example, languages
like Spanish, Italian, Portuguese, French, Romanian, et al. are part of the Romance family of lan-
guages, with Latin being their common ancestor [11]. Programming languages emulate dialects
with their updates that regularly change some of their syntax and semantics, and have family trees,
often more complex than their natural language homologs. This is because the process of deriving
a new programming language can also involve the inheritance of non-linguistic features present on
its common ancestors (i.e., coding functionality). It is worth noting that, since programming lan-
guages are developed mostly for a specific niche (e.g., to run natively on a given operating system,
enhance the performance of an older language, etc.), it is common to see languages having more
than one direct ancestor; contrary to natural languages in which overlaps of various languages from
distinct families are rare (usually in the form of pidgins and creoles [10]).



2.2 Syntax
In Linguistics, syntax is the branch that studies the classification and relationship of words in a

language. Basics of syntax include:

• Word classes: Also known as parts of speech, they are categories in which words with a
similar grammatical function are grouped together, e.g., nouns, verbs, adjectives, adverbs,
conjunctions, adpositions, etc [12].

• Subjects and predicates: The subject of a clause is the entity performing the action, while
the predicate is whatever the subject does or is [12].

• Heads and dependents: The head of a clause is the word with the most significant semantic
meaning of the sentence (e.g., in the sentence “The dog was barking at the girl in front of
him”, the head of the clause is “the dog” since the clause revolves around it). The dependents
are other pieces of information that accompany the head and provide complemental meaning
to the sentence. Languages can either be head-initial (with the head at the beginning of a
clause) or head-final (with the head at the end of a clause) [12].

• Complements and adjuncts: Dependents can either be complements, which are mandatory
particles that complete the meaning of the head (e.g., for the sentence above, “at the girl”
is a complement); or adjuncts, which are optional particles that specify the sentence within
certain boundaries (e.g., for the sentence above, “in front of him” is an adjunct) [12].

Programming languages follow the same syntactic concepts of their natural homologs and can
be effectively categorized and analyzed using these principles. This feature is what makes pseu-
docode as an adequate token replacement for a programming language, as it is relatively easy to
translate the constituents that conform a line of code into a sentence. It is worth noting that word
classes in programming languages may be related to functional aspects (what they do) rather than
their grammatical purposes (where they appear). For example, in a programming language like
C++, although pointers and constant attributes serve as adverbs (since they modify an adjective,
which would be the data type the variable (noun) possesses), they are generally considered two
separate concepts due to their different function and applications.

2.3 Semantics
In Linguistics, semantics refer to the meaning of a sentence, without considering its context or

intent. This field of Linguistics is split between lexical semantics (the meaning of single words or
small phrases) and compositional semantics (the meaning of phrasal expressions or sentences as
a whole unit).

Lexical semantics in programming languages are almost impossible to study. This is because
they operate based on two aspects: sense (the mental representation of the meaning in an expres-
sion) and reference (the concept this expression refers to). The nature of user-defined meaning
within a programming language makes this analysis inconsistent. For example, function overload-
ing in a programming language can disjoint the link between sense and reference without the use
of documentation that explicitly defines their relationship.



As for compositional semantics, the analysis comes down to evaluating the truth value of a
sentence as a sum of propositions. Propositions are expressions that carry a truth value, which
is often linked to the syntactic relationships and constraints of its constituents. For example, the
sentence “The young man dances”, there are two propositions: “The man is young” and “The man
dances.” The sentence “The table dances” is not a proposition, since it does not have a truth value
(as an inanimate noun cannot perform a verb associated with animate nouns). It is worth noting
that ambiguous sentences (conditionals, questions, imperative commands, etc.) can be rephrased
to determine if they abide by the compositional semantic rules. Programming languages follow
compositional semantics just like their natural homologs, with errors in syntax making expressions
fail the proposition evaluation.

The major difference in this field is the interpretation of the recipient when dealing with se-
mantic errors. Machines are not able to interpret small mistakes that would deem the expression as
infelicitous (semantically inappropriate), with some noteworthy exceptions like HTML, in which
the absence of a closing tag may not affect functionality. Humans can overcome the offset of a
relatively small mistake and try to deconstruct the intended meaning of the expression, whereas
computers will often mark the error as unacceptable.

Another nuance is the presence of multiple meanings in each expression, something that pro-
gramming languages lack. Natural languages can use techniques such as slang, jargon, variation in
intonation, argot, etc. to inflict different meanings into the same expression depending on the com-
mon understanding between the speaker and the recipient. Machines do not possess this discerning
ability and are limited to understand any phrase or a sentence in only one way.

This comparison between the core components of natural and programming languages paves
the way for an analysis of their acquisition models and assumptions. The similarities between both
types of languages will be emphasized, as this will be key for the conclusions and implications of
the paper.

3 Comparing language acquisition
Language acquisition can be defined as the process in which an individual develops proficiency

(i.e., mastery in an area of communication, such as speaking, listening, etc.) in a formerly unknown
language. Although learning to code entails knowledge that falls beyond the scope of this defini-
tion, such as design features of computing (e.g., the use of binary, code architecture, etc.). Table 2
mentions critical aspects of the similarities and differences of language acquisition.



Similarities Differences
The principles and milestones of acquisition
are similar in both types of languages.

Natural languages have a more sig-
nificant emphasis on social con-
text and interaction when learning.

They both have two independent learning
components (passive and active) that must
be acquired to achieve proficiency.

Programming languages have features that
make immediate feedback inherently. eas-
ier to receive than natural languages.

Both are influenced by similar factors (moti-
vation, attitude, cognitive style, etc.) that can
enhance or impede the acquisition process.

The processes of acquisition and the result-
ing “proficiency” differs from both types of
languages.

Table 2: Similarities and differences in the acquisition of programming and natural languages.

3.1 Similarities
• Principles and milestones: The first similarity in acquisition comes from the foundations

of both types of languages. Since they both serve the same purpose (communication), they
also share similar milestones when measuring the retention of the reader. Barmpoutis defines
these milestones for programming languages as three stages of learning (acquiring, consoli-
dating, tuning) with two types of knowledge: declarative (stating the concept to be learned)
and procedural (internalizing the concept until it becomes “muscle memory”) [13]. Natural
language acquisition also has a similar model with five stages [14]. Table 3 further discusses
the stages of each acquisition development model.

Both models are very similar, with an emphasis on learning the basic concepts of the lan-
guage, then building structures that become more complex as the learner gets accustomed to
the nuances of the language, and finally achieving a peak in which proficiency is achieved
by polishing the concepts that are not already mastered. The similarity in the milestones that
define acquisition is essential, as this can be a useful metric to measure the proficiency of the
learner.



Programming language learning stages Natural language learning stages
Acquiring: the learner is focusing on
declarative knowledge to understand
the basic concepts of the language

Silent: the learner spends time learning ba-
sic vocabulary and getting accustomed to the
language as a whole.

Consolidating: a leap between declar-
ative and procedural knowledge is
done, so the learner establishes their
knowledge

Early production: the learner has some vo-
cabulary, and it starts to form basic gram-
matical structures.

Tuning: the learner polishes any mis-
takes when retrieving the concepts until
it becomes second nature.

Speech emergence: the learner learns com-
plex structures and consolidates most of the
critical vocabulary needed.

Intermediate fluency: the learner consol-
idates the complex structures, thinking in
the target language becomes common.

Advanced fluency: the learner tunes any
concepts needed for mastery.

Table 3: Language acquisition development models.

• Learning Components: Our second similarity is the presence of two independent compo-
nents of learning the language: passive and active. Passive skills refer to the ones in which
the brain processes information (i.e., reading, listening), and active skills refer to the active
neurological production of information (i.e., speaking, writing). It is worth noting that al-
though programming languages lack a spoken variant of these components, this does not
impede the comparison (due to many natural languages lacking a writing variant). These
components are directly tied to the stages of learning, as a learner must be accustomed to
understanding a language before being able to reproduce any of its features.

• Factors that affect language learning: The last similarity to be discussed in this paper is the
set of factors that can affect the language learning process (either positively or negatively),
defined by Khasinah [15]. Table 4 contains the factors that are present in both natural and
programming languages.



Factor Effect
Motivation A learner who has a reason (either by necessity or for

curiosity) to learn a language is prone to learn faster.
Attitude Positive or negative views on the target language and

the culture surrounding it make language learning eas-
ier or more challenging, respectively.

Aptitude Certain inherent skills (namely memorization and pat-
tern recognition) can give an edge for learning a new
language.

Self-esteem Learners who think negatively of their ability to ac-
quire a language will have more difficulties when
learning.

Cognitive
style

Regardless of the cognitive style of the learner (visual,
auditive, kinesthetic), picking the style that aligns with
them dramatically enhances language learning.

Table 4: Similar factors that affect language acquisition.

The acquisition of programming languages, similar to their natural homologs, shares these
factors. With some small exceptions and nuances (mainly coming from the fact that program-
ming language learning also entails other technical components of the language, namely
functionality, and purpose in a system), the recognition of these factors can dramatically
enhance the acquisition process of a learner.

3.2 Differences
• Social context: A significant difference between natural and programming languages is how

the former has an embedded element of a social context that must be present to acquire the
principles of the language properly. In the same study from Khasinah [15], in which they
list several factors that influence natural language acquisition, there is an emphasis on social
context. These factors are listed on Table 5.

As discussed in section 2.1, the change in the intended recipient of the language is respon-
sible for a difference in the type of information that can be conveyed through language. For
natural languages, human-to-human interaction also has societal and cultural components
that explain these factors. As for programming language acquisition, the human-to-machine
exchange does not allow for social context to interfere with learning and to master the syntax
and semantics of the target language.



Factor Effect
Extroversion Extroverted and introverted learners tend to develop

their active and passive skills with more ease, respec-
tively.

Anxiety An anxious learner may feel uncomfortable using their
active components of language learning, thus hinder-
ing their ability to learn these skills.

Inhibition A learner that inhibits and heavily punishes their mis-
takes when producing speech, similarly to anxiety,
will effectively hinder their ability to acquire lan-
guage.

Table 5: Social factors that only affect natural language acquisition.

• Feedback: When phasing from the declarative to the procedural knowledge stages in the lan-
guage learning model, programming languages use the immediate feedback received from
the applications of their code to consolidate the concepts to learn. The feedback sources for
natural languages, on the other hand, are somewhat limited in comparison. Not every learner
can count on resources such as a native speaker to practice with or substantial documenta-
tion, especially when learning endangered languages. In contrast, programming languages
can always test and debug their code to learn and polish their skills. It is worth noting that
programming concepts such as a good code architecture, or optimization of resources such
as time, computing power, or memory allocation fall beyond the scope of this nuance.

• Thinking and “proficiency”: Although the milestones and principles of both languages are
similar, the definition of “proficiency” differs between programming and natural languages.
Programming language proficiency is tailored towards problem solving, optimization, and
the use of computational thinking to develop the necessary algorithms and systems that will
effectively give the desired output to the programmer. Natural language proficiency, on the
other hand, is mainly tied to the articulated fluency of its passive and active skills (reading,
writing, listening, and speaking). Having a fast reaction to these stimuli is more important
than finding an optimized way of communicating. Additionally, features like register, into-
nation, and other forms of speech must be considered and adjusted throughout any conver-
sation.

4 Implications
Comparing and analyzing the nature and acquisition of programming and natural languages is

crucial for having a deeper understanding of the elements that can be integrated into developing
proficiency and enhancing the ways in which they are taught. Likewise, differences in both models
can help with the optimization of the areas in which the type of language differs from one another.
For example, some natural languages have both spoken and written forms, adding a layer of com-
plexity (since now the learner also has to consider the sounds of the language and their features
e.g., intonation, pronunciation, etc.) that must be addressed in a way different than programming
languages, which are only written. Some key implications of the comparison are:



• Since programming languages can be linguistically analyzed (for example, within the areas
of syntax and semantics, as shown in 2.2. and 2.3.), it would be useful to implement basic
concepts of these features in introductory-level courses. This would give the learners an
ability to further understand how a specific programming language behaves. For example,
when thinking about the syntax of a programming language, it would be useful to recall some
linguistic concepts such as the head (the core of a sentence) and the dependents (auxiliary
information for the head) of a sentence.

• Knowing that the stages of language acquisition development are similar in both types of lan-
guages [13, 14], it could be helpful to stress the importance of declarative and procedural
knowledge since it is a relevant aspect of both models. For example, in the phenomeno-
graphic study done by Eckerdal and Berglund [16] performed at the University of Uppsala
in Sweden, there was a recurrent struggle amongst students tied to a lack of procedural
knowledge (referred in the paper as canonical procedures). For instance, if a learner of C++
cannot recall how to construct and use pointers with ease, it will hinder their ability to per-
form certain tasks that involve heavy use of pointers (e.g., passing objects to a function by
reference).

• The shared factors for language acquisition can be beneficial for programming language
courses. Profiling the students’ motivation, attitude, aptitude, and cognitive style at the be-
ginning of a course can help in how it is taught by giving helpful resources that accommodate
the needs of each student. On a similar note, natural languages should also emphasize on the
social context of learning a language, such as using cultural references and casual conver-
sations to immerse the learner into the target language (and the culture surrounding said
language). This way, a learner can take advantage of as many factors that enhance language
acquisition as possible.

• The inherent feedback features of programming languages (e.g., compiler errors, integrated
IDE spellcheckers, etc.) can be used as a powerful tool when practicing the target language.
Making learners aware of these resources could make the learning process smoother, as
these features are meant to help correct small mistakes, and learners may adapt quickly to
the proper form of coding. A great example of this is how, in many programming languages,
a semicolon is needed to end the command line. New programmers are usually reminded
of the importance of the semicolon when compiler errors occur due to this issue and, with
enough practice and exposure, they will instinctively put semicolons. Natural languages, on
the other hand, may adopt similar strategies for feedback collection and data gathering that
can help its learners on their consolidation and tuning of knowledge. For example, writing
on an electronic device with spellchecking features can correct the spelling of the learner.

• Just like natural languages do, programming languages must develop both active and passive
components of language acquisition simultaneously. For example, in an empirical study per-
formed at the Pearl River Community College in Mississippi, the USA by A. G. Applin [17],
there was a trend of increased performance in CS1 classes when students had the opportu-
nity to modify templates on their programming assignments, compared to the convention of
writing everything from scratch. A reason for this improvement may come from the dual
task of both passive and active components of language learning, and more research needs to



be done in order to confirm the effectiveness of this teaching method. One way to implement
this could be providing snippets of code that follow “good programming practice” guide-
lines (e.g., clean code, a thorough program architecture, etc.), and making students pick up
these habits by being regularly exposed to this design features, enhancing their ability to read
through code and documentation.

5 Conclusion
The link between programming and natural languages and the applications of the knowledge

between their similarities and differences is undeniable. The comparison between both types of
languages in their foundations, syntax, semantics, and acquisition models yielded various impli-
cations that could improve the way both fields interact with learners. The implications of this
comparison lie in several guidelines that could be implemented in both programming and natural
language courses, with various examples of research studies that support the analysis. Improving
the way introductory courses are taught will ultimately help cultivate a better understanding of
computational concepts and constructs.

References
[1] R. C. Gardner and W. E. Lambert, “Attitudes and motivation in second-language learning.”

1972.

[2] B. McLaughlin, “Theories of second-language learning,” 1987.

[3] J. Arnold and M. C. Fonseca, “Multiple intelligence theory and foreign language learning: A
brain-based perspective,” International journal of English studies, vol. 4, no. 1, pp. 119–136,
2004.

[4] M. Van den Noort, E. Struys, P. Bosch, L. Jaswetz, B. Perriard, S. Yeo, P. Barisch, K. Ver-
meire, S.-H. Lee, and S. Lim, “Does the bilingual advantage in cognitive control exist and if
so, what are its modulating factors? a systematic review,” Behavioral Sciences, vol. 9, no. 3,
p. 27, 2019.

[5] P. Auer, Code-switching in conversation: Language, interaction and identity. Routledge,
2013.

[6] S. Pinker, “Formal models of language learning,” Cognition, vol. 7, no. 3, pp. 217–283, 1979.

[7] M. Gazzola, “Gabrielle hogan-brun: Linguanomics: What is the market potential of multilin-
gualism?” 2018.

[8] J. M. Wing, “Computational thinking and thinking about computing,” Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366,
no. 1881, pp. 3717–3725, 2008.

[9] J. F. Werker, L. Polka, and J. E. Pegg, “The conditioned head turn procedure as a method for
testing infant speech perception,” Infant and Child Development, vol. 6, no. 3-4, pp. 171–178,
1997.



[10] H. Dawson, M. Phelan et al., Language files: Materials for an introduction to language and
linguistics. The Ohio State University Press, 2016.

[11] D. M. Eberhard, G. F. Simons, and C. D. Fenning, “Languages of the world.” [Online].
Available: https://www.ethnologue.com/

[12] M. Tallerman, Understanding syntax. Routledge, 2014.

[13] A. Barmpoutis, “Learning programming languages as shortcuts to natural language token re-
placements,” in Proceedings of the 18th Koli Calling International Conference on Computing
Education Research, 2018, pp. 1–10.

[14] T. S. Team, “5 stages of second language acquisition: Resilient educa-
tor,” Dec 2018. [Online]. Available: https://resilienteducator.com/classroom-resources/
five-stages-of-second-language-acquisition/

[15] S. Khasinah, “Factors influencing second language acquisition,” Englisia: Journal of Lan-
guage, Education, and Humanities, vol. 1, no. 2, 2014.

[16] A. Eckerdal, M. Thuné, and A. Berglund, “What does it take to learn’programming think-
ing’?” in Proceedings of the first international workshop on Computing education research,
2005, pp. 135–142.

[17] A. G. Applin, “Second language acquisition and cs1,” ACM SIGCSE Bulletin, vol. 33, no. 1,
pp. 174–178, 2001.

https://www.ethnologue.com/
https://resilienteducator.com/classroom-resources/five-stages-of-second-language-acquisition/
https://resilienteducator.com/classroom-resources/five-stages-of-second-language-acquisition/

	Introduction
	Theoretical Framework
	Foundations
	Syntax
	Semantics

	Comparing language acquisition
	Similarities
	Differences

	Implications
	Conclusion

