
Neo-Piagetian Classification of Reasoning Ability and

Mental Simulation in Microsoft’s Kodu Game Lab

Ashish Aggarwal
Dept. of Computer & Info. Sci & Eng.

University of Florida
Gainesville, FL 32611

ashishjuit@ufl.edu

ABSTRACT

Over the past five years, there has been a major push to develop

the computational thinking skills of K-12 students. Tools such as

Scratch, Alice, and Kodu have been developed to engage students

in learning to program through the creation of computational

artifacts (e.g., games, animations, and stories). However, less is

known about how elementary and middle school children reason

about program behavior. Such skills are useful for reading and

adapting others programs, locating possible sources of bugs, and

predicting program behavior given code snippets (i.e., mental-

simulation). The goal of this poster is to measure and track the

development of students’ ability to reason about programs using

Teague & Lister’s Neo-Piagetian classification of novice

programmers: Sensorimotor, Preoperational Thinkers, and

Concrete Operational Thinkers. We operationalize Teague and

Lister’s category descriptions by creating a criterion for each

category. This classification has helped us characterize students’

mastery of strategies for reasoning about the lawful behavior of

programs using a Kodu curriculum. In particular, this

categorization was used to differentiate students’ reasoning styles

using data from two studies having 20 and 19 students each. We

found strong consistency in the results across both studies.

Through analysis and categorization of student responses, most

students fall into the preoperational thinker category. Within this

category, we found a diversity of mastery patterns that help us

understand where students face challenges in reasoning about

programs.

Keywords

Computational Thinking; Neo-Piagetian; Kodu; Mental Simulation;

Reasoning Ability; Lawfulness; K-12;

1. PROBLEM AND MOTIVATION
Many researchers have studied how novice programmers learn to

program using text-based programming languages. However, the

process by which students transition from various stages of

program understanding, reasoning, and mastery of concepts has

not been studied at length. Using Microsoft Kodu’s Game Lab, we

aim to study how students reason about programs. Kodu is an

ideal environment to explore how students reason about programs

because the simple rule structure allows students to create

programs with a wide range of behaviors quickly. In addition,

there are simple laws that govern how “[program rules] are

evaluated, actions are sequenced, and state is updated” [6]. Thus,

using Kodu we expect novice students will be able to interpret

Kodu syntax and computational rules and predict program

behavior. This will allow us to explore the developmental stages

students undergo while learning to reason about programs.

2. BACKGROUND AND RELATED WORK
Microsoft Kodu Game Lab is a tile-based visual programming

language built specifically to develop 3D game development. It

uses WHEN-DO conditional rules to construct valid syntax. Dr.

David S. Touretzky at Carnegie Mellon University has developed

a Kodu curriculum [3] focused on developing reasoning about

programs based on lawfulness [6]. Over 100 students have gone

through the program. The curriculum teaches students about

lawful reasoning about program behavior by teaching them a set

of simple laws that govern rule evaluation and actions in Kodu

worlds. To help students learn to reason about programs, the

curriculum uses physical manipulatives such as tiles and

flashcards [4] to help students learn basic computational rules and

design patterns. The flashcards have basic design patterns or

idioms which give initial actions that can be programmed in

Kodu. Tiles are meant to scaffold students’ rule construction and

rule recognition ability.

At the end of each module, students are given a set of assessment

questions to gauge their mastery of content covered in the module

and development of their reasoning skills. Figure 1 demonstrates a

type of question students are given to evaluate their program

reasoning skills. We expect students to lawfully and logically

interpret Kodu’s syntax after participating in the Kodu sessions.

For example, in Kodu’s Apple 1 World (Figure 2), students see 5

apples scattered throughout the world and a student is expected

write a program to pursue and consume the apples. When asked to

predict the order in which the Kodu character will eat the apples

the students are expected to reason using Law 1 which states

“Each rule picks the closest matching object”. Thus, a student

who is able to lawfully reason about the program would say that

the rules state the Kodu character will pick the closest matching

apple then eat it. Then it will continue on to the next closest

matching apple and eat it, repeating this sequence until all the

apples are gone.

In previous research, we have analyzed the end of module

assessments to map out students’ performance on these questions

and to identify the kind of errors students make [6]. In our

research to date, we have identified several common mistakes and

misconceptions students have that affect their ability to correctly

reason about the behavior of Kodu programs. Our next step in

this research is to understand the relationship between these

misconceptions and errors and students’ development of program

reasoning skills.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the Owner/Author. Copyright is held by the

owner/author(s).

SIGCSE '17, March 8–11, 2017, Seattle, WA, USA.

ACM 978-1-4503-4698-6/17/03.

DOI: http://dx.doi.org/10.1145/3017680.3022469

745

http://dx.doi.org/10.1145/3017680.3022469

Figure 1: The Question asked to mentally simulate the syntax.

Figure 2: Kodu apple 1 world (left) and rule editor (right).

Teague and Lister [1, 5] have earlier categorized novice

programmers and have researched the development of novice

students’ ability to program. They characterize novice

programmers into one of three categories: sensorimotor, pre-

operational or concrete operational thinker. Sensorimotor novice

programmers represent the “least mature stage” of cognitive

development. They possess “fragile domain knowledge as

disjointed snippets which they find difficult to piece together in

any satisfactory manner” [1]. At the next stage, preoperational

novice programmers are able to “more reliably trace code” but do

not really understand the “relationships between different parts of

the code” [1]. Concrete operational novice programmers are able

to reason “at a more abstract level” They have developed the

“ability to see the whole and its parts at the same time” [1]. We

use this classification as a reference to understand and

characterize the different states of reasoning students are able to

demonstrate.

3. APPROACH AND UNIQUENESS
The research presented in this poster is focused on characterizing

and understanding the mastery and reasoning abilities of

elementary school students. We use Neo-Piagetian classifications

[2] as it captures the development of reasoning skills which is

important for understanding the extent to which students are able

to lawfully reasoning about Kodu programs. In particular, we

separate and classify the assessment questions based on the

required reasoning ability such as mental simulation/program

prediction ability, rule recognition, or simple understanding of the

concepts. This helps us in categorizing the reasoning ability of

novice programmer using the Neo-Piagetian classifications. For

example, a student who can successfully mental simulate and

predict the program behavior demonstrates a more abstract form

of reasoning and thus exhibiting the quality of a concrete

operational thinker. While a student who analogically recognize a

behavior or concept without regard to the laws, exhibits the

qualities of a preoperational thinkers.

We internally validated the classification of questions and

students reasoning ability using the overall score of students on

the assessments. Thus, if students scored low on the assessments

and only correctly answered simple understanding questions, they

were classified as sensorimotor novice programmers. Simple

understanding questions included those asking students to state

the laws or recognize the basic functionality of rules. Often, the

sensorimotor students had difficulty in the understanding the

application of the rules and laws. We then further classify pre-

operational thinkers as students who made random or consistent

errors in applying or interpreting the laws and predicting the

program behavior. In this poster, we evaluate the effectiveness of

this classification on student mastery of the first three modules of

the Kodu curriculum with 39 students, having 20 and 19 students

each in two different studies to evaluate and classify students’

reasoning ability as sensorimotor, pre-operational or concrete

operational thinking.

4. RESULTS AND CONTRIBUTION
Our observations and results suggest that most of the students in

our study were pre-operational reasoners after the first three

modules and this is consistent across the two studies reported in

this poster. 15 out 20 students were classified as pre-operational in

the first study and 15 out of 19 in the second study. 9 students in

each study demonstrated a pattern of incorrect responses which

could be attributed to simple misconceptions. This helped in

identification of common misconceptions among students. These

results show a snapshot of students’ reasoning ability and an

approach for operationalizing the Neo-Piagetian Novice

Programmer Classifications developed by Teague & Listers [1,5].

This work will help CS educators to reflect on how to assess

students computational understanding and their reasoning

abilities. In addition, it can help us to reflect on what supports are

needed to develop students in concrete operational thinkers and

reasoners. Additional studies of novice programmers and their

program comprehension ability will help the field understanding

the common misunderstandings the students are developing and

how can we improve their reasoning abilities.

5. ACKNOWLEDGMENTS
Funded by a gift from Microsoft. Thanks to Dr. Christina

Gardner-McCune for advising the research and Dr. David S.

Touretzky for his guidance and support.

6. REFERENCES
[1] Teague, D., & Lister, R. (2014, June). Programming: reading,

writing and reversing. In Proceedings of the 2014 conference on

Innovation & technology in computer science education (pp. 285-
290). ACM.

[2] Lister, R. (2011, January). Concrete and other neo-Piagetian forms
of reasoning in the novice programmer. In Proceedings of the

Thirteenth Australasian Computing Education Conference Volume

114 (pp. 9-18). Australian Computer Society, Inc.

[3] Touretzky, D. S. (n.d.). Kodu Curriculum Modules. Retrieved July

26, 2016, from https://www.cs.cmu.edu/~dst/Kodu/Curriculum/

[4] Touretzky, D. S. (2014). Teaching Kodu with physical

manipulatives. ACM Inroads, 5(4), 4451.

[5] Teague, D., Corney, M., Ahadi, A., & Lister, R. (2013, January). A
qualitative think aloud study of the early neo-piagetian stages of

reasoning in novice programmers. In Proceedings of the Fifteenth
Australasian Computing Education Conference-Volume 136 (pp. 87-

95). Australian Computer Society, Inc.

[6] Touretzky, D. S., Gardner-McCune, C., & Aggarwal, A. (2016,
February). Teaching Lawfulness With Kodu. In Proceedings of the

47th ACM Technical Symposium on Computing Science Education

(pp. 621-626). ACM

746

View publication statsView publication stats

https://www.researchgate.net/publication/316948582

