
Semantic Reasoning in Young Programmers

David S. Touretzky
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, PA 15213

dst@cs.cmu.edu

Christina Gardner-McCune
Dept. of Computer & Info.

Science & Engineering
University of Florida

Gainesville, FL 32611
gmccune@ufl.edu

Ashish Aggarwal
Dept. of Computer & Info.

Science & Engineering
University of Florida

Gainesville, FL 32611
ashishjuit@ufl.edu

ABSTRACT

Reading, tracing, and explaining the behavior of code are
strongly correlated with the ability to write code effectively.
To investigate program understanding in young children, we
introduced two groups of third graders to Microsoft’s Kodu
Game Lab; the second group was also given four semantic
“Laws of Kodu” to better scaffold their reasoning and dis-
courage some common misconceptions. Explicitly teaching
semantics proved helpful with one type of misconception but
not with others. During each session, students were asked
to predict the behavior of short Kodu programs. We found
different styles of student reasoning (analytical and analog-
ical) that may correspond to distinct neo-Piagetian stages
of development as described by Teague and Lister (2014).
Kodu reasoning problems appear to be a promising tool for
assessing computational thinking in young programmers.

CCS Concepts

•Social and professional topics → Model curricula;
K-12 education; Computational thinking;

Keywords

Kodu Game Lab; formal reasoning; programming idioms

1. INTRODUCTION
The strong scaffolding provided by drag-and-drop editors

has removed syntax as an obstacle to children’s program-
ming, but semantic errors can never be completely elimi-
nated regardless of programming environment. Explicit in-
struction in language semantics might help students reason
about programs more effectively and develop their abstract
reasoning skills. We investigated this idea in the context
of Microsoft’s Kodu Game Lab [4], a rule-based language
whose high-level primitives allow interesting programs to be
constructed in just 2-3 lines. Here we report results of two
four-session “Kodu camps” conducted with third graders.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 08-11, 2017, Seattle, WA, USA

c© 2017 ACM. ISBN 978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3017680.3017787

Participants were asked to demonstrate their understand-
ing by predicting the behavior of a character given a code
fragment and initial state of the world. In the second camp
we introduced four novel “Laws of Kodu” (Figure 1) which
concisely capture key features of Kodu’s semantics. While
this appeared to help students reason more correctly, we also
saw evidence that the laws could be misapplied.

2. REASONING ABOUT PROGRAMS
Research on program reading and comprehension stretches

back to the mid-1980s. One of the initial arguments was by
Deimel [1], who claimed that code reading is just as im-
portant as learning to code. Soloway suggested that teach-
ing effective reasoning strategies should be emphasized,
writing that “learning to program amounts to learning [both]
how to construct mechanisms and how to construct explana-
tions” [6]. More recently, Guzdial wrote that it is important
for students to develop a robust “notional machine” (a
type of mental model described by du Boulay et al. [2]) that
will allow them to understand how programs work [3].

Teague and Lister [7, 8] offered a neo-Piagetian theory
of programmer cognitive development and identified three
important developmental stages in novices. At the senso-
rimotor stage, students hold many misconceptions, are un-
able to reason effectively about programs, and code by trial
and error. At the preoperational stage they can trace code
but can only reason intuitively; they do not reliably see re-
lationships between program components. At the concrete
operational stage they reason more abstractly and also rec-
ognize higher order relationships such as conservation, tran-
sitivity, and reversibility. But progress is multi-faceted: the
components of reasoning advance at different rates. Thus,
students may become capable of demonstrating concrete op-
erational reasoning for some types of problems while remain-
ing preoperational for other types.

We have developed a computational thinking curriculum
using Kodu whose primary goal is to get children into the
habit of reasoning about programs. Even young children
have experienced this type of reasoning when they discuss
the rules of card games such as Go Fish, or board games
such as Chutes and Ladders. It’s not implausible that they
could learn to reason abstractly about computation as well,
given a developmentally appropriate computing framework.

3. THE SEMANTICS OF KODU
Kodu programs are collections of WHEN-DO rules orga-

nized into pages. We consider only single-page programs
here. The WHEN part of every rule begins with a predi-

Figure 1: The Laws of Kodu.

cate tile; the DO part begins with an action tile. Additional
tiles supply arguments and modifiers. The rules on a page
run repeatedly, in parallel, with each cycle taking a few mil-
liseconds. The apparently continuous behavior of a Kodu
character is the result of many discrete rule firings.

We say that a rule “can run” if its WHEN part is true.
When a rule runs, it may “fire” its action, unless the action
has been overridden by another rule (discussed below).

We developed new graphical notation to illustrate to stu-
dents the status of a rule (Figure 1). A green checkmark
indicates that the rule’s WHEN part is satisfied, while a red
cross together with a grayed-out WHEN part indicates that
the WHEN part could not be satisfied. If the DO part is
grayed out, this indicates that the action was not fired. If
the entire line including the rule number is grayed out and
there is neither a check nor a cross, which can only occur
with indented rules (Fourth Law), the rule was not eligible
to run because its parent could not run.

Conflict resolution is essential to understanding Kodu se-
mantics. Variable binding conflicts can arise on the WHEN
side: in a world with multiple apples, which one should a
“see apple” pattern select? Action conflicts can arise on the
DO side: if two rules are trying to move a character in dif-
ferent directions, where should it go? We formulated four
laws to explain how conflicts are resolved and how the rule
interpreter functions. Additional laws are possible.

The First Law of Kodu explains how variable binding
works. Our initial wording of the First Law was “Rules pick
the closest matching object.” After observing some students
mistakenly thinking that this was a joint decision (the “col-
lective choice fallacy”), we adjusted the wording to “Each
rule picks the closest matching object.” This change had
not yet been made at the time of the camps reported here.

The Second Law indicates that rules do not run sequen-
tially; any rule with a true WHEN part can run, and if a
rule can run, it will. We introduced this law to counter
the “sequential procedure fallacy” that a page of rules is an
ordered sequence of actions, as is the case with Scratch or
Python procedures. Kodu’s graphical convention of num-
bering the rules on a page also unfortunately affords mis-
interpreting them as ordered steps. We have seen evidence
from past studies that some students held the sequential
procedure fallacy. To convince them otherwise, the graphic
for the Second Law illustrates that “Pursue and Consume”
rules produce the same behavior even if their order is re-
versed. (“Pursue and Consume” is the first idiom or design
pattern students learn in our curriculum [9].)

It is tempting to summarize the Second Law as “rule order
doesn’t matter,” but rule order does matter when actions
conflict. In such situations the earliest (lowest numbered)
fire-able action wins. This is expressed as the Third Law.

The graphic for the Third Law was designed to counter a
misunderstanding about the First Law. Although the blue
apple is closer to the kodu than the red one, the kodu is
proceeding to the latter. The First Law applies to each
rule individually, resolving conflicts specific to that rule’s
WHEN pattern. It does not mediate conflicts between rules,
which can only arise in the DO part. Thus, the First Law
determines which apple each rule selects, but it is the Third
Law that causes the kodu to move toward the red apple
rather than the blue one. The yellow arrow in the Third
Law graphic in Figure 1 indicates that rule 2’s action (grayed
out) has lost to rule 1’s action.

The Fourth Law explains that rule indentation establishes
a dependency relationship: an indented rule can run only if

its parent can. The parent of an indented rule is the first
preceding rule with less indentation.

Rule dependency has several uses in Kodu. If the child
rule has an empty WHEN part and both rules have non-
empty DO parts, the DO parts form a compound action
similar to a two-line block in the THEN part of a procedural
language, controlled by the parent rule’s predicate. This is
the basis of the Do Two Things idiom, which is the second
idiom students learn in our curriculum [10]. Other uses of
rule dependency were not covered in the study reported here.

4. SCAFFOLDING STUDENT REASONING
The idioms or design patterns at the heart of our cur-

riculum scaffold the understanding of programs in terms of
more meaningful chunks than individual statements. Stu-
dents were explicitly taught these idioms, and provided with
tangible idiom catalogs in the form of flash card decks that
were always available to them. Assessment tasks both rein-
forced the idioms and measured understanding. For exam-
ple, when studying Pursue and Consume, we asked students
to read a rule and classify it as either a pursue rule or a
consume rule. More challenging assessment tasks presented
variations on an idiom, such as Pursue and Consume with
two consume rules, and asked students to predict the result.

Mental simulation (or program tracing) is an essential skill
for predicting program behavior. Given a code fragment
and initial state of the world, students must recognize that
a character’s starting position determines the results of only
the first execution step. Once it starts moving, determin-
ing which rules run and how conflicts are resolved requires
keeping track of the character’s location. We’ve tested for
this by asking children to indicate the trajectory the kodu
takes when running a Pursue and Consume program to eat
all the apples. A child who mistakenly orders the apples by
their distance from the kodu’s starting location is not do-
ing this kind of mental simulation. We’ve found that asking
children to first draw the trajectory before placing numbers
next to the apples is more likely to elicit a correct response
[10]. This is an example of scaffolding mental simulation.

One of the issues raised by our study is how to tell when
students are actually doing mental simulation vs. reasoning
in some other mode, such as by making analogies to pro-
grams they’ve seen previously. Our assessment questions
were designed with this goal in mind.

5. STUDY DESCRIPTION
Two after-school Kodu camps were held at the same school,

one in Nov./Dec. 2015 and one in Mar./Apr. 2016. Each
camp consisted of four 80 minute sessions spaced 1 week
apart, except for a two week gap between sessions 2 and 3
(Camp 1) or 3 and 4 (Camp 2) due to scheduling issues.
Camp 1 had 20 participants; Camp 2 had 19. Participants
were in the third grade, where they were learning Scratch
in school. They used their personal tablet computers, which
were supplied to all students by the school district, plus
Xbox 360 game controllers1 that we loaned to them for the
duration of the study.

Sessions consisted of a mix of activities: teacher demon-
strations, hands-on exercises, written assessments, and re-
view of the answers. The first three sessions ended with
small programming assignments to be completed at home

1Kodu can also be run with a mouse or touch screen.

and turned in at the following session. The written assess-
ments, administered during sessions 2–4, tested recall of the
material and ability to apply it to predict program behavior.

This study is part of a larger design-based research study
on how to best scaffold elementary school students learn-
ing to program in and reason about Kodu. After each cur-
riculum implementation we analyze the results and make
changes based on issues in the learning and instruction that
we’ve identified. In this case, analysis of the Camp 1 results
led us to formulate a set of explicit “Laws of Kodu” with
graphic representations as shown in Figure 1.

Students in Camp 2 were taught the same material as
Camp 1, but were also presented with the new, explicit rep-
resentation of the laws. Camp 1 students had been intro-
duced to the ideas encapsulated in the laws, but less sys-
tematically, e.g. they verified by experimentation that rules
picked the closest matching object. They saw a demonstra-
tion that changing the order of pursue and consume rules
did not affect behavior. They also saw a demonstration that
with multiple pursue rules, the first pursue rule shut out the
second one until the first rule could no longer run. Camp 2
students experienced these same activities, but the graphic
depictions of the laws were projected on a whiteboard, dis-
cussed verbally, and referred to during the demonstrations.
Printouts of the laws were left on the whiteboard throughout
the class. During class discussions, Camp 2 students made
spontaneous references to the laws, which suggests that they
found them useful for guiding their thinking.

6. DATA COLLECTION AND ANALYSIS
The written assessments collected in sessions 2–4 were

scored and analyzed for evidence of misconceptions. In pre-
vious work we identified two sources of incorrect answers:
(1) the sequential procedure fallacy, and (2) “negative trans-
fer,” by which we mean reasoning by analogy to previous
experience rather than mentally simulating the actual code
fragment presented. We call the former strategy analogi-
cal as opposed to analytical reasoning and hypothesize that
this reflects different approaches to problem solving between
students. Analogical reasoning is an important skill, but in
formal domains such as mathematics or computer program-
ming, imprecise analogies will not yield correct conclusions.
Students need to be guided to think analytically. In neo-
Piagetian terms we might say they have to progress from
preoperational to concrete operational reasoning.

Since we used the same assessments in both camps, we
could look for evidence of the effects of teaching explicit laws.
One drawback to this backwards-compatible design is that
the Camp 2 assessments did not refer directly to the laws or
ask students to restate the laws or explain behavior by cit-
ing appropriate laws. We should also acknowledge that the
instructor and his assistants were new to Kodu, so Camp 2
was somewhat more polished and ran more smoothly, which
could contribute to better outcomes.

7. RESULTS

7.1 Basic Understanding
Students in both camps could distinguish between pursue

and consume rules, recognize in which category a given rule
belonged, and select the correct rule out of three graphical
alternatives based on a verbal description.

Students in both camps also understood the heavily em-
phasized principle that rules pick the closest matching object
(First Law), and they could correctly indicate the trajectory
a character would take to consume a collection of apples.
Thus, given the right scaffolding, students could perform at
least one type of mental simulation.

7.2 Order of Execution
More students in Camp 2 recognized that a consume-

and-pursue rule pair would behave the same as pursue-and-
consume. Figure 2 shows two questions used to measure
this, and Table 1 summarizes the results.

Figure 2: Rule ordering assessment: module 1 ques-
tion 8 (M1Q8) and module 2 question 10 (M2Q10).

Problem Group A B C D Total

M1Q8 Camp 1 11 0 9 0 20
Camp 2 1 0 17 0 18

M2Q10 Camp 1 1 11 1 7 20
Camp 2 2 16 0 1 19

Table 1: Rule ordering results: correct responses in
blue, sequential procedure fallacy in red.

In module 1 question 8 (M1Q8), answer C indicates a cor-
rect understanding of the Second Law: “Any rule that can
run, will run.” Answer A suggests either that the student
didn’t recognize this as a pursue and consume design pat-
tern, or they held the sequential procedure fallacy. In Camp
1, only 9 of 20 students correctly chose C, but in Camp 2, 17
of 18 did. The module 2 assessments were 1-2 weeks later.
For problem M2Q10 (Figure 2, bottom) answer B is correct,
while answer D is consistent with the sequential procedure
fallacy. In Camp 1, only 11 students out of 20 correctly
chose B, but in Camp 2, 16 of 19 students did.

Six of the 11 Camp 1 students who answered A on M1Q8

also answered D on M2Q10, indicating that they held firmly
to the sequential procedure fallacy. Likewise, the one Camp
2 student who incorrectly answered M1Q8 also incorrectly
answered M2Q10. But overall the students in Camp 2 were
less prone to the sequential procedure fallacy.

7.3 Conflict Resolution
To measure students’ understanding of conflict resolution

we gave them problems with two pursue rules (e.g., one to
pursue apples and one to pursue stars, as in Figure 3).

Figure 3: Two pursue rules: module 1 question 9
(M1Q9) and module 2 question 11 (M2Q11).

Problem Group A B C D Total

M1Q9 part 1 Camp 1 1 14 5 0 20
Camp 2 1 12 2 3 18

M2Q11 part 1 Camp 1 17 0 2 1 20
Camp 2 7 0 0 12 19

M1Q9 part 2 Camp 1 14 4 0 0 20∗

Camp 2 11 5 0 1 18∗

M2Q11 part 2 Camp 1 18 1 0 1 20
Camp 2 7 5 2 5 19

Table 2: Two pursue rules: correct responses shown
in blue; collective choice fallacy in green; sequential
procedure fallacy in red; misapplying the Third Law
in magenta. ∗Includes blank responses.

Multiple pursue rules cause a conflict that is resolved by
the Third Law: the first pursue rule must be exhausted

before the second pursue rule can fire its action. Students
who have not mastered the Third Law may think the pursue
rules will alternate (in accordance with the sequential pro-
cedure fallacy.) Alternatively, they might think the pursue
rules jointly choose the closest object (the collective choice
fallacy), and then whichever rule matches gets to run.

Table 2 summarizes the results. The two groups per-
formed comparably in the first assessment where the objects
were of two different types (apples and stars in M1Q9). They
had recently seen a demo of this situation. For part 1, Camp
1 had 14 correct out of 20, while Camp 2 had 12 correct out
of 18. But in the second assessment, where the question in-
volved a single type of object with different colors (rocks in
M2Q11), Camp 1 outperformed Camp 2 on part 1: Camp 1
had 17 correct out of 20, while Camp 2 had only 7 correct
out of 19, with the remaining 12 responses indicating that
the Mars rover would choose the closest rock no matter the
color (collective choice fallacy).

Four of the six Camp 2 students who responded incor-
rectly to M1Q9 part 1 also responded incorrectly to M2Q11
part 1. The erroneous Camp 2 responses suggest that stu-
dents were mis-applying the First Law, which had been
heavily emphasized in class and was presented in its more
ambiguous form (“Rules pick” instead of “Each rule picks”.)
Although students in both camps had seen examples where a
character consumed all objects of one color before pursuing
objects of a second color, this seemed to have less influence
on the students in Camp 2.

Part 2 asked when the first lower-priority object (stars
in M1Q9, green rocks in M2Q11) would be consumed. For
M1Q9 part 2 the two camps performed comparably, but for
M2Q11 part 2 Camp 1 again outperformed Camp 2. In
Camp 1, 18 out of 20 students correctly answered A (when
the red rocks are gone) on M2Q11 part 2. In Camp 2 only
7 of 19 students got this right; 5 chose B (right after it
grabs a red rock), 2 chose C (never), and the remaining
5 chose D (only if it bumps one by accident). Answer B
suggests the sequential procedure fallacy, while answers C
and D are consistent with mis-applying the Third Law: not
realizing that rule conflict ends when the red rocks have been
exhausted. Answer D might also be explained by negative
transfer because in module 1 students had seen a pursue rule
with two consume rules, and the “only if it bumps into one
by accident” answer was correct.

7.4 Anomalous Rule Sequences
To further test students’ reasoning abilities, we gave them

problems with one pursue rule followed by two consume rules
(Figure 4). Two consume rules do not cause a conflict be-
cause they will never be simultaneously runnable. But only
the second one was supported by a matching pursue rule, so
the kodu will never pursue the first type of object; it can still
consume it if it bumps into one by accident while pursuing
something else. Students had not encountered this situation
in any of the demonstrations they saw or the programs they
wrote themselves. Answering these problems correctly re-
quires careful attention to what the rules say and how the
laws govern them. Reasoning by analogy to previous pro-
grams will not work in this situation.

Table 3 summarizes the results. Part 1 of each problem
asked what the kodu (or Mars rover) would consume first.
Students performed roughly equally across camps, but the
percentage of correct answers declined over time. Combining

part 1 figures from both camps, correct answers declined
from 35/38 (92%) for M1Q10, to 31/39 (79%) in M2Q12,
down to 20/38 (53%) in M3Q6. Most incorrect responses
were consistent with the sequential procedure fallacy. The
initially high success rate might be explained by students
paying attention to just the first rule, which was always the
pursue rule, and assuming by analogy to previous programs
that whatever is pursued will be consumed. As they gained
experience and were more likely to attend to all the rules,
they became confused by the presence of the unsupported
consume rule, which always preceded the supported one.

M1Q10:
same world
as M1Q9
(Fig. 3)

M2Q12:
same world
as M2Q11
(Fig. 3)

Figure 4: Problems involving anomalous rule se-
quences: one pursue and two consume rules.

Problem Group A B C D Total

M1Q10 part 1 Camp 1 19 1 0 0 20
Camp 2 16 2 0 0 18

M2Q12 part 1 Camp 1 4 16 0 0 20
Camp 2 3 15 0 1 19

M3Q6 part 1 Camp 1 8 0 9 2 19
Camp 2 6 1 11 1 19

M1Q10 part 2 Camp 1 12 2 5 1 20
Camp 2 6 3 6 3 18

M2Q12 part 2 Camp 1 8 2 1 9 20
Camp 2 6 4 1 8 19

M3Q6 part 2 Camp 1 6 3 7 2 19∗

Camp 2 2 6 9 2 19

Table 3: Two consume rules. Coding as in Table 2.

Part 2 of each problem asked when the kodu or rover
would consume whatever the non-pursued object was (apple,
green rock, or green soccer ball). Students in both camps
had trouble with this question. The correct answer is“Never,
unless it bumps into one by accident.” Only about one third
answered correctly for M1Q10 part 2, improving to roughly
one half for M2Q12 part 2 and M3Q6 part 2. Incorrect
responses consistent with the sequential procedure fallacy
can arise from two types of imperfect analogy, depending on
whether one focuses on rules 1 and 2 or on rules 2 and 3.
The third possible incorrect answer, “When all the [pursued
objects] are gone,” suggests a faulty analogy to two-pursue-
rules problems. Students may be aware that with two pursue
rules, the first must be exhausted before the second can take
control. But applying this knowledge to a situation with two
consume rules is a misapplication of the Third Law.

Inconsistent responses on the two parts of M3Q6 support
the hypothesis that some children were reasoning preopera-
tionally. In part 1, 6 Camp 2 students said (incorrectly) that
the kodu would boom a green ball first, but in part 2 only 2
of those 6 said the kodu would boom green balls first. Why
weren’t they consistent? Preoperational reasoners don’t un-
derstand the relationships between rules but can interpret
rules individually. In part 1 they can scan the list of rules
and find that the first consume rule is for green balls. But
part 2 asks a more complex question whose answer is not an
object, but a state of the world during program execution.
Preoperational reasoners can only approach such questions
indirectly. Two used their answer on part 1 to answer part
2 consistently (“green balls first”). Two answered “when the
pink balls are gone,” reasoning analogically to earlier pro-
grams they’d seen. One chose “it’s random; you can’t pre-
dict it,” and one correctly answered “never,” contradicting
their answer on part 1.

8. CONCLUSIONS
Kodu’s high level primitives afford writing non-trivial pro-

grams that are only 2-3 lines long. This allowed us to demon-
strate that reasoning about program behavior is accessible
to third graders. To correctly predict program behavior stu-
dents must engage in mental simulation following the laws
of Kodu semantics.

All students demonstrated scaffolded mental simulation
by trajectory tracing, and some showed true analytical rea-
soning in answering the more challenging assessment ques-
tions. But other students appeared to cling to the sequential
procedure or collective choice fallacies, or to rely on analo-
gies to previously seen programs rather than applying the
laws learned in the study. We attribute this to differences
in reasoning style combined with limited time on task. This
may reflect the different rates at which students were pro-
gressing from the sensorimotor to preoperational to concrete
operational stages of reasoning within the Kodu domain.

The results of this study suggest several ways to better
scaffold the cognitive development of young Kodu program-
mers. One is to introduce exercises focused specifically on
the laws, such as showing some bit of behavior and asking
students to explain it in terms of the laws, or showing some
anomalous behavior and asking students which law would
be violated if a character did behave that way. Another
strategy is to present two-pursue-rule and two-consume-rule
programs as design patterns in their own right and investi-
gate the differences in their behavior.

Kodu is a rich medium for exploring student reasoning
beyond pursue and consume programs. Its rule dependency
relation (Fourth Law) supports both block structure and
if/then/else constructs (our Do Two Things, Count Actions,
and Default Value idioms). Its support for state machines af-
fords reasoning about abstract concepts such as state reach-
ability. Investigating student understanding of these con-
structs will require studies with considerably more contact
hours.

How can the skills children develop through this curricu-
lum transfer to procedural languages such as Scratch or
Python? Because they use simpler primitives, it is more dif-
ficult to construct short nontrivial programs to reason about,
but it may be possible.2 And Kodu’s WHEN-DO rules bear
some resemblance to Scratch event handling. In any case,
mental simulation and analytical reasoning are important
in all types of programming. If children become concrete
operational thinkers about Kodu programs, we expect they
will then be quicker to reach this developmental stage when
learning other languages.

Acknowledgments

Funded by a gift from Microsoft Research. Thanks to Stephen
Coy of Microsoft FUSE Labs for suggesting the check/cross
imagery and for many helpful discussions.

9. REFERENCES
[1] L. E. Deimel Jr. The uses of program reading. In

SIGCSE Bull., volume 17, pages 5–14, 1985.

[2] B. du Boulay, T. O’Shea, and J. Monk. The black box
inside the glass box: presenting computing concepts to
novices. Int J. Man-Machine Studies, 14:237–249,
1981.

[3] M. Guzdial. Learner-Centered Design of Computing
Education: Research on Computing for Everyone.
Morgan & Claypool, 2015.

[4] M. B. MacLaurin. The design of Kodu: A tiny visual
programming language for children on the Xbox 360.
In Proceedings of POPL ’11), pages 241–246, 2011.

[5] D. Parsons and P. Haden. Parson’s programming
puzzles: a fun and effective learning tool for first
programming courses. In ACE ’06 Proceedings of the
8th Australian Conference on Computing Education,
volume 52, pages 157–163, 2006.

[6] E. Soloway. Learning to program = learning to
construct mechanisms and explanations. Comm.
ACM, 29(9):850–858, 1986.

[7] D. Teague. Neo-Piagetian Theory and the Novice
Programmer. PhD thesis, Queensland University of
Technology, 2015.

[8] D. Teague and R. Lister. Programming: reading,
writing, and reversing. In Proc. ITiCSE ’14, pages
285–290, 2014.

[9] D. S. Touretzky. Teaching Kodu with physical
manipulatives. ACM Inroads, 5(4):44–51, 2014.

[10] D. S. Touretzky, C. Gardner-McCune, and
V. Aggarwal. Teaching ‘lawfulness’ with Kodu. In
Proceedings of SIGCSE’16, pages 621–626, 2016.

2Parson’s problems [5] might be seen as a procedural lan-
guage analogue of the problems we developed for Kodu.

