
Evaluating the Use and Effectiveness of Ungraded Practice Problems
in an Introductory Programming Course

Caleb O’Malley
Department of Engineering Education

University of Florida

Gainesville, Florida, USA

calebomalley@ufl.edu

Ashish Aggarwal
Department of Engineering Education

University of Florida

Gainesville, Florida, USA

ashishjuit@ufl.edu

ABSTRACT

Educational researchers have been interested in finding out

factors which are pivotal in a students’ success within any course.

However, less is known about students’ engagement with

optional course content and its effect on learning outcomes.

Optional content is any ungraded component of the course

available to students for additional practice. In our context, it is

ungraded quizzes based on concepts discussed in an introductory

programming course. In this paper, we present the methodology,

analysis, and results of a study concerned with how students

engage with optional quizzes and what effects this content may

have on students’ learning. We find that before the midterm exam,

over half of all students completed at least one quiz of the four

available, while a third of students completed all available

quizzes. Leading up to the midterm exam, we observed a large

increase in submissions. During the second half of the semester,

overall participation decreased slightly. Again, leading up to the

final exam, students’ submissions became more frequent. When

investigating correlations between quiz completion and student

performance, notable differences were observed between the

highest and lowest levels of quiz completion. The results of this

study will help computer science educators in understanding how

students utilize optional content similar to ours and further guide

in improving the effectiveness of such content, especially in the

context of introductory programming courses. These insights will

help to guide the creation and implementation of optional practice

problems, with the goal to improve the student’s overall

experience of the course.

CCS CONCEPTS

• Social and professional topics ~ Computer science education;

CS1

KEYWORDS
Optional programming exercises, CS1, course approach, non-

majors, practice

ACM Reference format:

Caleb O’Malley and Ashish Aggarwal. 2020. Evaluating the Use and

Effectiveness of Ungraded Practice Problems in an Introductory
Programming Course. In Proceedings of 22nd Australasian Computing

Education Conference (ACE’20). ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3373165.3373185

1 Background
Introductory programming courses are often cited for their high

attrition rates and overall difficulty [3, 15]. In an effort to improve

student learning outcomes, instructors and researchers attempt to

understand what factors are crucial to a student’s performance,

and create new teaching tools and strategies in the process. It is

essential for instructors who intend to incorporate new

components into their courses to know what to expect. By

providing more insight into how students interact with tools, as

well as the impact these tools may have on student engagement

and performance, instructors can make more informed decisions.

1.1 Teaching Tools
Various teaching tools and strategies have been studied for their

ability to enhance the students’ learning experience. Some of the

most well-known among these include the flipped classroom [9],

pair programming [12, 16], and different styles of short practice

problems [1, 2, 8].

 McDowell et al. [12] report that pair programming is an

essential tool for improving student retention, programming

confidence, and persistence in computer science related majors.

Another study from Wood et al. [16] also finds that pair

programming is a valuable tool for instructors in CS1 courses.

The students involved in this study provided positive feedback

about pair programming, and exhibited increased motivation,

engagement, and performance.

 In a study focused on unannounced, or “pop” quizzes,

Cicirello [5] found that pop quizzes improved student

performance on both exams and programming assignments.

Effects also varied according to students’ majors and class year.

 Allen et al. [1] reported that the implementation of many

small programs (MSPs), as opposed to one large program (OLP),

into CS1 courses yielded happier students with better grades.

1.2 Optional Practice Problems/Content
Student interactions with course material have also been studied

extensively, taking place in many different contexts.

 Allen et al. [2] performed a follow-up study that described

student usage of the MSPs, which observed that student

interaction with the MSPs was also very positive. Students often

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee.

Request permissions from Permissions@acm.org.

ACE'20, February 3–7, 2020, Melbourne, VIC, Australia

© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-7686-0/20/02…$15.00

https://doi.org/10.1145/3373165.3373185

completed more problems than required, completed them earlier

than OLPs, and used them for exam preparation.

 Edgcomb et al. [7] studied the extent to which students

completed assignments earnestly. They found that for the most

part, students earnestly completed assignments and few “cheated

the system”. Although this material was not optional, they

concluded that students are more likely to earnestly complete

material if points are awarded towards their final grade, if the

content is well-designed, and if the amount of work is sizable.

 Additional research on the viewability of homework answers

[17] finds that students will usually complete homework earnestly

rather than looking at the answer for immediate credit, but that

this earnestness decreases over the semester, likely due to fatigue

and difficulty of the content.

 Leppänen et al. [11] found, through machine learning

methods, that a student’s performance can be accurately predicted

by their usage of online content within about 3-4 weeks of the

start of the semester.

 Edwards et al. [8] reported on the use of an open source drill-

and-practice system consisting of short programming problems.

Students appeared to enjoy using the system and were able to see

the benefits that a system like this offered. Student participation

in this optional content was found to be linked to exam

performance, specifically for code-writing questions.

1.3 Motivation
Enrollment in computer science courses continues to see a boom,

drawing in non-majors and students of varying levels of prior

programming experience [4]. One study from Sax et al. [14]

found that many non-computing majors are enrolling in

introductory programming courses, many of which are female

students. These students and many more find themselves

enrolling in these courses due to interest, rather than a degree

requirement.

 CS educators must grapple with the challenge of making their

courses more effective for all types of students. This can be

difficult, as tailoring content and personalizing learning becomes

more difficult with scale. An instructor may not want to require a

great deal of content pertaining to a single concept for students

who have prior programming experience, as they may already be

quite familiar with the concept. However, this repetition might be

useful for students who do not have as much prior programming

experience. One solution is to provide some optional ungraded

practice problems to students, so that they can be used by students

who need extra practice, while simultaneously not requiring

everyone to complete it. However, less is known about the

usefulness and effectiveness of such optional content. Do the

students who normally excel in their coursework overall tend to

use it more? Or do the students who think they need more practice

use it more often? This is important to know, because

understanding the student’s approach to the course helps

educators decide what improves students’ learning.

 To provide more insight into this question, we are studying

the usage of optional content in an introductory programming

course for non-majors, and analyzing whether or not this extra

practice benefits students. We believe that the results of this

analysis will help instructors to better design their courses

according to student expectations, providing a richer experience

for all students.

1.4 Research Questions
This study seeks to answer the following research questions:

1. How do students interact with the optional content in an

introductory programming course?

a. How many students complete the content?

b. When do students complete the content?

c. Why do students complete the content?

2. How effective is this optional content in improving

student learning outcomes?

2 Methods

2.1 Course
The study took place during the Spring semester of a two-credit

introductory programming course designed for engineering

students in a public R1 research institution in the Southeast

U.S.A. The course is carried out both online and in person,

providing traditional lectures which are recorded and then made

available online immediately. This course uses MATLAB as its

programming language. The workload of the course consists of

weekly project-based homework assignments intended to be

moderately challenging. Students are able to seek help from other

students, teaching assistants, or the internet to complete these

assignments. The students take two exams; a midterm and a final.

For studying and learning purposes, students have access to

practice exams as well as the optional online quizzes which are

the focus of this study. A total of 169 students are taken into

account by this study.

2.2 Demographics
A survey was made available online at the end of the semester,

and students received a few extra credit points for completing it.

The survey asked for the student’s name, gender, class year,

major, and amount of prior programming experience. The

programming experience question was framed as time spent

programming, and the answer choices are listed as follows: “No

prior experience”, “Between 1 to 10 hours”, “Between 11 to 100

hours”, “Between 101 to 500 hours”, “I am a software developer”,

or “I invented a programming language”. The students’ responses

are broken down below:

Table 1. Majors of student population.

Major Number of Students

Mechanical Engineering 73 (43%)

Aerospace Engineering 42 (25%)

Civil Engineering 26 (15%)

Material Science

Engineering

13 (8%)

Other Engineering 14 (8%)

Undeclared 1 (1%)

 By major, the class is mostly mechanical engineering,

aerospace, and civil engineering.

 By gender, 78% of students are male and 22% are female. No

students chose alternate answers.

 By class year, 55% of students are freshmen, 30% are

sophomores, 14% are juniors, and 1% are seniors.

Table 2. Prior programming experience of student population.

Prior Programming

Experience

Number of Students

“No prior experience” 78 (46%)

“Between 1 and 10

Hours”

28 (17%)

“Between 11 and 100

Hours”

49 (29%)

“Between 101 and 500

Hours”

14 (8%)

 In terms of prior programming experience, the class was split

roughly halfway between having no prior experience and having

at least some prior experience.

 Overall, the class is heavily dominated by male students, and

nearly all students are enrolled in an engineering major. Over

three-fourths of the students are either first or second-year

students, and the major categories of prior experience include “No

prior experience” and “Between 11 and 100 hours”.

2.3 Optional Quizzes
For this study, optional content is provided in the form of weekly

optional quizzes. These practice quizzes are posted periodically

throughout the semester on the course’s learning management

system (LMS). Four quizzes were released before the midterm

exam, with the first quiz being released about a month before the

exam and the fourth quiz being released one week before the

exam. This timeline also holds for the other four quizzes which

were released after the midterm, before the final exam.

 Each quiz consists of roughly ten questions of increasing

difficulty, all focused on a single concept. The quizzes are

intended to solidify foundational concepts, and only include

content already covered in lecture. The questions are created to

test program reasoning skills. Most questions include a code

snippet which students must trace through in order to answer the

question, either providing the output of the program or providing

some missing link to make the program function properly. The

questions are similar to exam questions, but are not as difficult.

Students are able to submit attempts for these quizzes an

unlimited number of times, and the correct answers are not shown

to them after submitting an attempt.

 In our context, students are not shown the answers due to the

fact that most questions contain a snippet of code. If a student is

struggling with a question, they can use MATLAB to run the code

and understand it in this way. This type of learning is encouraged

over simply reading the correct answer from the screen.

 Students were given unlimited attempts at the quizzes so that

they would be able to use this resource whenever they felt

appropriate, and however much they desired.

While sorting through the quiz submission data, it became

apparent that two primary types of submissions existed. Most

submissions come from students simply completing the quiz and

trying to earn a good score. Some other submissions, however,

come from students who only answer one or two questions in

order to check if they get those specific questions right. Because

quiz completion is being studied as a possible factor of course

performance in this study, we needed to guarantee that only

meaningful interactions with the optional content were part of our

data set.

 To account for this, a criterion was created to ensure that the

attempts being considered in our analysis were representative of

students putting in effort to understand the concepts. In order to

be considered a meaningful quiz attempt, the student must have

answered at least half of the questions on the quiz. Nearly all of

the attempts that ended up being excluded from analysis

contained only one or two answers.

 While this data was excluded from the more formal statistical

analysis, the trends in this data is discussed in analysis section

4.1.4.

2.4 Data Collection
Data was collected in two primary ways. Throughout the

semester, the students completed the optional quizzes online

through the course’s LMS. Reports were generated for each quiz,

which included the number of attempts, time submitted, and

scores. Data was also collected via the end-of-course survey,

which allowed us to collect demographic information about the

students.

 The end-of-course survey was also a source of student

feedback. Students provided responses to questions regarding

attitudes towards programming and the course in general, as well

as the resources they found most useful during the semester.

 While students are still able to access old quizzes up until the

end of the semester, only submissions that are completed before

the upcoming exam are counted. This is because the students’

quiz completion is being analyzed as a possible causal factor of

student success.

3 Analysis

3.1 Quiz Usage
When analyzing how students interact with the optional quizzes,

the data considered are the number of students completing each

quiz, the number of attempts by students on each quiz, the general

time at which the student completes the quizzes, and whether or

not the student completed the quiz within twenty-four hours of

the upcoming exam. Students with varying levels of prior

programming experience were also analyzed to check if students

with higher or lower levels of prior experience appear either more

or less likely to complete optional quizzes.

A student’s performance in the course is defined as their exam

scores. Exam scores were chosen to represent student

performance because other metrics, such as final grade or

assignment average, are fairly high among most students.

Students are given a few days to complete homework

assignments, meaning they can seek help from peers, teaching

assistants, and the internet. Therefore, many students’ average

assignment scores are quite high and are similar across the

sample. The data from exam scores, on the other hand, contains

more variation and is a better representation of a student’s

understanding of the content.

 The variables used when analyzing student performance are

quiz completion and prior programming experience. When

looking at how many of the quizzes most students completed, it

becomes apparent that three major groups exist. Students were

categorized as completing all quizzes, some of the quizzes, or

none of the quizzes.

Table 3. Quiz completion data for all quizzes throughout the semester.

 Prior programming experience (PPE) was also tested for its

possible impact on student performance. A student with PPE = 0

reported having either “No prior experience” or “Between 1-10

hours” of experience. A student with PPE = 1 consists of all

students who reported having more experience in programming.

3.2 Tests for Assumptions
Before performing statistical tests, the exam data was tested for

assumptions of normality, homogeneity of variance, and

independence. All statistical analysis was conducted in IBM-

SPSS 25.

 The assumption of normality was tested and was not met via

examination of the residuals. The Shapiro-Wilk (S-W) test for

normality (SW = 0.948, df = 169, p < 0.001) and skewness (-

0.944) and kurtosis (1.341) statistics show that the data is

negatively skewed for the exam average. The boxplot for this data

demonstrated a similar negatively skewed shape, as did the

histogram and Q-Q plot. These plots are not included for the sake

of brevity. According to Levene’s test, the homogeneity of

variance assumption was satisfied [F (5, 163) = 1.395, p = 0.229].

The data’s independence is limited due to the students being in

the same course and institution.

3.3 T-tests Comparing Means
Before performing a t-test, the exam scores of each group of

students is compared via an F-test. This test checks if the

variances of the two groups are similar. The t-test follows the F-

test and either assumes equal variances or unequal variances

based on the results of the F-test. The t-stat used to determine

significance is two-tailed, checking if each group of students

performed either significantly better or worse than the other

group. An alpha value of 0.05 was used to determine significance

for all tests.

 Students with PPE = 0 were compared to students with PPE

= 1 to check for significant differences between the two groups’

mean exam scores.

 Students who completed all optional quizzes were compared

to students who completed none of the quizzes to check for

significant differences between the students’ mean exam scores.

 Students were also divided into subgroups. The group of

students with PPE = 0 who completed all quizzes was compared

to the group of students with PPE = 0 who completed none of the

quizzes, and vice versa for students with PPE = 1.

3.4 Factorial ANOVA
In addition to the t-tests which compare the means between

different groups of students, a factorial ANOVA was conducted

to determine if the mean exam score achieved by students differed

based on their prior programming experience (PPE = 0 or 1) and

the students’ level of quiz completion (None, some, or all). Line

plots using the estimated marginal means of each group were also

generated to visualize the interaction and effects of each factor on

mean exam score.

 One factorial ANOVA was performed for each exam, as well

as for the average of the two exam scores. When performing the

ANOVA for midterm scores, the quiz completion is based only

on students’ completion of the first four quizzes. Similarly, when

conducting the ANOVA for final scores, only the students’

completion of the last four quizzes was counted towards their quiz

completion. For the average exam score ANOVA, all completed

quizzes were counted.

4 Findings

4.1 Patterns of Usage

In the first half of the course, four quizzes were made available

before the midterm exam.

 Before the midterm exam, 113 students (67%) out of 169

completed at least one of the quizzes, and 59 of those students

(35%) completed all of the optional quizzes. The remaining 56

students (33%) did not complete any of the optional quizzes.

 Note that for every single one of these first quizzes (Table-

3), at least half of all students interacted with the quiz for the first

time less than twenty-four hours before they had to take the

upcoming exam.

 After the midterm, four more quizzes were made available.

During this time, 93 students (55%) out of 169 completed at least

one of the quizzes, while 60 of those (36%) students completed

all of the optional quizzes. The remaining 76 students (45%) did

not complete any of the optional quizzes.

 Less students overall completed quizzes during the second

half of the semester, and a smaller proportion of students

completed them within one day of the exam.

Figure 1. Number of optional quizzes completed by students.

Quizzes before midterm exam Quizzes before final exam

Quiz Number
Total Students

Completing

First Attempt

Within 24 hours of

Midterm

Quiz Number
Total Students

Completing

First Attempt

Within 24 hours

of Final

1 107 55 (51%) 5 84 34 (40%)

2 91 58 (64%) 6 81 39 (48%)

3 80 63 (79%) 7 79 44 (56%)

4 67 51 (76%) 8 67 45 (67%)

 The number of optional quizzes completed by the students

over the entire semester (Figure-1) shows that many completed

either none of the quizzes or all of them, and many chose to only

complete some of them.

When considering what factors may affect quiz usage, prior

programming experience is one possible candidate. Students with

higher or lower levels of prior experience may seek out this

content for different reasons.

 Looking primarily at the students who completed either none

or all of the quizzes, it is observed that about 35% of students with

higher levels of prior programming experience chose not to

complete any available quizzes. In contrast, only about 20% of

students with little to no prior experience chose to complete none

of the quizzes.

Figure 2. Number of optional quizzes completed by students.

 Additionally, only about 20% of students with higher levels

of programming experience chose to complete all quizzes,

whereas over 25% of students with low prior experience

completed all of the quizzes (Figure-2). This relationship does

become foggy throughout the middle section, where the sample

sizes are smaller.

As mentioned in section 2.3.1, not all quiz submissions were

complete. Many were received with only one or two responses

entered, often following an initial fully-answered submission.

 The average number of submissions excluded from any one

quiz was 61. While this sounds like a lot of data to exclude, it is

worth noting that on many of the quizzes, a single student was

responsible for up to 10 submissions containing only a single

answer each. When taking a deeper look at the features of this

data set, most excluded submissions are preceded by a single

attempt which was filled out completely. From this point, the

student would submit a single response to each question, probing

the quiz to find out which question was answered incorrectly.

This phenomenon is a direct result of the choices to make answers

hidden, even after submission, and to allow unlimited

submissions.

 What this tells us about the students is that many of them are

seeking mastery of the quizzes. This is a possible direction of

future work, which would help uncover more about the nature of

students’ submissions.

Students were able to submit an unlimited number of attempts to

each quiz. On the first four quizzes, on average, students submit

1.97 attempts. After removing incomplete attempts, students

submitted an average of 1.55 meaningful attempts.

 On the last four quizzes, students submit an average of 1.94

attempts. This time, the average meaningful attempts submitted

per student was 1.37.

 The highest number of meaningful submissions from any

student throughout the semester is eight. If including excluded

submissions, several students submit upward of ten times.

 These numbers tell us that, on average, students are very

likely to use the quizzes more than once, and likely twice. Similar

to the interpretation of the excluded attempts, this indicates that

some students are seeking mastery while others are content with

one submission.

4.2 Correlation with Student Performance

On the midterm exam, students who completed all four quizzes

before midterm did not perform significantly different (p = 0.786)

from those who completed none of the quizzes.

 On the midterm exam, students with PPE = 1 performed

significantly better (p < 0.001) than students with PPE = 0.

 On the midterm exam, students with PPE = 0 who completed

all quizzes did not perform significantly different (p = 0.559)

from students with PPE = 0 who completed none of the quizzes.

 On the midterm exam, students with PPE = 1 who completed

all four quizzes did not perform significantly different (p = 0.671)

from students with PPE = 1 who completed none of the quizzes.

Table 4: Average midterm scores for each major category of

students.

Category (N) Avg. Midterm Score

All quizzes completed (59) 87.2

No quizzes completed (56) 86.6

PPE = 1 (63) 91.6

PPE = 0 (106) 83.5

All students (169) 86.1

The results from the factorial ANOVA agree with the findings

from the t-tests. The interaction of quiz completion and prior

programming experience is not statistically significant, but there

is a significant main effect for prior programming experience (F

= 18.952, df = 1, 163, p < 0.001). Effect size is small for both

prior experience and quiz completion (partial ηppe
2 = 0.104; partial

ηquiz
2 = 0.002), and observed power is large for prior experience

(0.991) and small for quiz completion (0.079).

Figure 3. Prior programming experience and quiz completion

are visualized with midterm scores using a line plot.

The line plot (Figure-3) of estimated marginal means for each

group on midterm shows that prior programming experience was

a more significant factor than quiz completion.

On final, students who completed all four quizzes before final

performed significantly better (p = 0.012) than those who

completed none of the quizzes.

On final, students with PPE = 1 performed significantly better (p

= 0.012) than students with PPE = 0.

On final, students with PPE = 0 who completed all quizzes

performed significantly better (p = 0.037) than students with PPE

= 0 who completed none of the quizzes.

On final, students with PPE = 1 who completed all four quizzes

did not perform significantly different (p = 0.056) from students

with PPE = 1 who completed none of the quizzes.

Table 5: Average final scores for each major category of

students.

Category (N) Avg. Final Exam Score

All quizzes completed (60) 78.0

No quizzes completed (76) 71.9

PPE = 1 (63) 77.8

PPE = 0 (106) 71.9

All students (169) 76.3

The results from the factorial ANOVA elaborate on the

differences found in final. The interaction between quiz

completion and prior programming experience is not statistically

significant, but there is a statistically significant main effect for

both quiz completion (F = 3.836, df = 2, 163, p = 0.024) and prior

programming experience (F = 5.432, df = 1, 163, p = 0.021).

Effect size is small for both prior experience and quiz completion

(partial ηppe
2 = 0.032; partial ηquiz

2 = 0.045), and observed power

is moderate for both prior programming experience (0.639) and

quiz completion (0.690).

Figure 4: Prior programming experience and quiz completion

are visualized with final scores using a line plot.

The line plot (Figure-4) of estimated marginal means for each

group on the final provides evidence that both prior programming

experience and quiz completion are significant factors for a

students’ exam score. The lines are sloped upwards to show that

scores increase with higher levels of quiz completion.

When performing these tests on the students’ average exam

scores rather than just the midterm or final, the dominant factor

appears to be prior programming experience. Although students

who completed all quizzes during the second part of the course

performed significantly better than those who completed none,

overall this difference is not significant for average exam scores.

Figure 5: Prior programming experience and quiz completion

are visualized with average exam scores using a line plot.

The results from the factorial ANOVA on the students’ average

exam scores provide additional evidence. The interaction of quiz

completion and prior programming experience is not statistically

significant, but there is a statistically significant main effect for

prior programming experience (F = 13.647, df = 1, 163, p <

0.001). The main effect for quiz completion is not significant.

Effect size is small for both prior experience and quiz completion

(partial ηppe
2 = 0.077; partial ηquiz

2 = 0.022), and observed power

is large for prior programming experience (0.957) and small for

quiz completion (0.386).

5 Discussion

5.1 Student Usage of Quizzes
When analyzing students’ usage of the quizzes over time, it was

observed that for most quizzes, around 50% of the students

completing the quizzes submitted their first attempt within

twenty-four hours of the upcoming exam. Student feedback about

the quizzes indicates that the students viewed the lecture videos,

lecture slides, and homework problems to be sufficient for their

learning, and that the quizzes were simply a nice addition that was

useful for exam preparation and detail checking. Many students

provided positive reviews stating that the quizzes “helped in

solidifying a foundation in basic concepts” and that they “targeted

common mistakes and misconceptions”. Because the quizzes

were ungraded and allowed for unlimited submissions, the

students were able to use the content in the manner which suited

them best.

 One byproduct of not displaying the correct answers and

allowing many submissions is the observed pattern of seeking

mastery through many single-answer submissions. Although this

set of data was not conducive to the statistical methods used

throughout this study, it provides an interesting caveat which will

likely become the subject of future analysis.

5.2 Student Motivation
 What is central to this discussion, however, is student

motivation. Why do students choose to complete these quizzes?

Once more, students’ responses are vital to understanding this

question. Students were asked to indicate the reason for not

completing the quizzes on the survey at the end of the course.

Upon analyzing the responses, we found that the most common

reason given is that students “thought the lecture videos were

sufficient” and that many students “feel confident in [their] ability

to understand and write code”. Many students also reported that

they were too busy overall to devote extra time to the course and

complete the quizzes. Surprisingly, only one student cited the

ungraded nature of the quizzes as a reason for not completing

them.

 To a limited extent, students with different levels of prior

experience elected to complete either more or fewer quizzes on

average. Students with more prior experience completed fewer

quizzes on average than students with lower prior experience.

However, this trend is only present at the two extreme ends of

quiz completion. No such trend was observed among students

completing between one and seven quizzes.

 Motivation can also be viewed as a potential factor of success

in the course. Although this was not studied nor tested for, it is a

possibility that the students who completed the quizzes are simply

more motivated, either intrinsically or extrinsically, to excel in

their coursework, and that this is the primary reason for any

observed differences between the quiz completion groups.

Despite this possibility, the nearly unanimously positive reviews

of the quizzes among students who completed them provide

reason believe that the quizzes did play a role in the success of

students, and provided many students with valuable learning

experiences.

5.3 Differences Between Exams
On the midterm exam, only prior programming experience was

found to be significant (p < 0.001). On the final, both prior

programming experience (p = 0.012) and quiz completion (p =

0.012) were found to be significant factors. This leads us to

believe that students may receive the most benefit from these

quizzes on advanced content. Drawing from student feedback,

multiple students specifically mentioned that the quizzes were

most helpful when addressing more complex topics; One student

noted that “the most helpful quizzes were on matrix math” and

another student “found the quizzes for images particularly

helpful”. These two concepts are both covered during the latter

part of the course. However, several students also reported the

same for earlier concepts, such as loops. Overall, this tells us that

the students found ways to use the quizzes in a variety of

scenarios, from detail-checking specific examples minutes before

an exam, to serving as a vital tool for solidifying fundamental

programming ideas.

 Upon studying the possible benefits received by students of

varying levels of prior programming experience, very little

difference was found. Students with lower incoming levels of

prior experience were seen to exhibit the same trends in exam

performance as students with higher levels of prior experience.

This points to a possible area of future work, as the variable of

prior programming experience has more depth to it. The

applicability of certain programming experiences to a MATLAB

course certainly varies.

6 Recommendations
Although it was found that on average, prior programming

experience was more significant than quiz completion, student

reviews of the quizzes provides reason to consider incorporating

optional quizzes into coursework. When embedding content like

this into a course, it is valuable to know that it is likely that around

half of the class will be completing the quizzes, and that many of

them will use this content as the exam draws near. Adaptations

can also be made to better accommodate students with low prior

programming experience. Ideally, all students would be

performing well by the end of the course. This means that students

with little to no prior experience in programming need extra

support in order to perform at the same level as those with greater

experience.

 While reviews of the quizzes were generally positive,

students did offer some constructive criticism which may be

valuable for instructors considering integrating similar content.

Students requested more difficult problem sets that would help

better prepare them for the exam. A few students also noted that

the quizzes helped mostly with code tracing skills, but not as

much with code writing. These concerns can be taken into

account by adding questions to the quizzes which differ in style

and difficulty.

7 Threats to Validity
Before performing any analysis, tests were conducted for

assumptions of normality, homogeneity of variance, and

independence. The data set used did not meet the assumption of

normality by the S-W test for normality. This means that we must

be very careful when drawing conclusions from the factorial

ANOVA data as well as the T-tests. Normally, the solution to this

is to only accept smaller p-values as significant, or use Bonferroni

Correction. In our case, almost all significant p-values were less

than .001, which allowed us to be confident in our conclusions

regarding prior programming experience and quiz completion. In

addition, these conclusions were deduced from a combination of

sources, and not simply the data from one or two statistical tests.

 Students’ responses to our survey question for prior

programming experience is another small threat to validity. It can

be difficult to quantify the amount of prior programming

experience a student has, especially to the exact number of hours.

For example, some students who responded “Between 11 and 100

hours” might only have 8 or 9 hours of programming experience,

but simply thought they had more. This would result in some

students potentially being placed in the wrong category. In

addition, prior programming experiences vary from student to

student, and may be more or less applicable to the course material.

More work is being done to make the analysis of prior

programming experience more granular.

 Measuring student performance by considering only exam

scores also slightly limits the study. With only two exam scores

representing the whole of a students’ performance in the course,

some details and intricacies are certainly overlooked. If a student

has one bad test day but completes all other assignments

perfectly, earning an A, they could still be classified as a student

who is performing poorly due to their one bad exam score.

However, we still feel that the exams provide a very strong set of

data to work with, especially in tandem with qualitative data.

8 Conclusions
 The increasing diversity and size of CS1 enrollment, paired

with the non-major context of this particular course, creates an

environment consisting of students with a variety of educational

needs. The usage and effectiveness of optional quizzes were

studied as a possible solution, providing students of varying prior

programming experience with a flexible learning tool. The

students utilized the optional quizzes in the manner which suited

them best, but many chose to use them as a last-minute study aid

within twenty-four hours of the exams. Throughout the semester,

roughly half of the students attempted at least one quiz, while a

smaller portion (roughly one third) of students elected to

complete all of the quizzes. In line with prior research, prior

programming experience proved to be significant factor of

learning outcomes overall. However, students completing the

quizzes were only seen to perform better during the second half

of the course. Despite this, the students provided positive reviews

of the quizzes and cited their value as a versatile tool in the course.

 For instructors planning to incorporate more optional content

into their courses, it will be important to know how students will

likely interact with this content, and to what extent it might

influence the students’ learning outcomes. By understanding the

usefulness and practicality of teaching tools such as optional

quizzes, instructors’ decisions regarding course design and

content can be more informed. Future research directions include

investigating student performance based on exam question type

(tracing code versus writing code), a deeper look into prior

programming experience according to types of experiences (self-

taught versus formal learning, in different languages and styles),

as well as a more qualitative study into student motivations for

completing optional assignments.

REFERENCES
[1] Joe Michael Allen, Frank Vahid, Kelly Downey, and Alex Edgcomb. 2018.

Weekly Programs in a CS1 Class: Experiences with Auto-graded Many-small

Programs (MSP). In Proceedings of 2018 ASEE Annual Conference &

Exposition. DOI: https://peer.asee.org/31231

[2] Joe Michael Allen, Frank Vahid, Alex Edgcomb, Kelly Downey, and Kris

Miller. 2019. An Analysis of Using Many Small Programs in CS1. In

Proceedings of the 50th ACM Technical Symposium on Computer Science

Education (SIGCSE '19). ACM, New York, NY, USA, 585-591. DOI:

https://doi.org/10.1145/3287324.3287466

[3] Jens Bennedsen and Michael E. Caspersen. 2007. Failure rates in introductory

programming. SIGCSE Bull. 39, 2 (June 2007), 32-36. DOI:

https://doi.org/10.1145/1272848.1272879

[4] Tracy Camp, Stu Zweben, Ellen Walker, and Lecia Barker. 2015. Booming

Enrollments: Good Times?. In Proceedings of the 46th ACM Technical

Symposium on Computer Science Education (SIGCSE '15). ACM, New

York, NY, USA, 80-81. DOI: https://doi.org/10.1145/2676723.2677333

[5] Vincent A. Cicirello. 2009. On the role and effectiveness of pop quizzes in

CS1. In Proceedings of the 40th ACM technical symposium on Computer

science education (SIGCSE '09). ACM, New York, NY, USA, 286-290. DOI:

https://doi.org/10.1145/1508865.1508971

[6] Suzanne L. Dazo, Nicholas R. Stepanek, Robert Fulkerson, and Brian Dorn.

2016. An Empirical Analysis of Video Viewing Behaviors in Flipped CS1

Courses. In Proceedings of the 2016 ACM Conference on Innovation and

Technology in Computer Science Education (ITiCSE '16). ACM, New York,

NY, USA, 106-111. DOI: https://doi.org/10.1145/2899415.2899468

[7] Alex Edgcomb, Frank Vahid, Roman Lysecky, and Susan Lysecky. 2017.

Getting Students to Earnestly Do Reading, Studying, and Homework in an

Introductory Programming Class. In Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education (SIGCSE '17). ACM,

New York, NY, USA, 171-176. DOI:

https://doi.org/10.1145/3017680.3017732

[8] Stephen H. Edwards, Krishnan P. Murali, and Ayaan M. Kazerouni. 2019.

The Relationship Between Voluntary Practice of Short Programming

Exercises and Exam Performance. In Proceedings of the ACM Conference on

Global Computing Education (CompEd '19). ACM, New York, NY, USA,

113-119. DOI: https://doi.org/10.1145/3300115.3309525

[9] Hassan Khosravi and Kendra M.L. Cooper. 2017. Using Learning Analytics

to Investigate Patterns of Performance and Engagement in Large Classes. In

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education (SIGCSE '17). ACM, New York, NY, USA, 309-314.

DOI: https://doi.org/10.1145/3017680.3017711

[10] Celine Latulipe, Audrey Rorrer, and Bruce Long. 2018. Longitudinal Data on

Flipped Class Effects on Performance in CS1 and Retention after CS1. In

Proceedings of the 49th ACM Technical Symposium on Computer Science

Education (SIGCSE '18). ACM, New York, NY, USA, 411-416. DOI:

https://doi.org/10.1145/3159450.3159518

[11] Leo Leppänen, Juho Leinonen, Petri Ihantola, and Arto Hellas. 2017.

Predicting Academic Success Based on Learning Material Usage. In

Proceedings of the 18th Annual Conference on Information Technology

Education (SIGITE '17). ACM, New York, NY, USA, 13-18. DOI:

https://doi.org/10.1145/3125659.3125695

[12] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald.

2006. Pair programming improves student retention, confidence, and program

quality. Commun. ACM 49, 8 (August 2006), 90-95. DOI:

https://doi.org/10.1145/1145287.1145293

[13] Aidan McGowan, Philip Hanna, and Neil Anderson. 2016. Teaching

Programming: Understanding Lecture Capture YouTube Analytics. In

Proceedings of the 2016 ACM Conference on Innovation and Technology in

Computer Science Education (ITiCSE '16). ACM, New York, NY, USA, 35-

40. DOI: https://doi.org/10.1145/2899415.2899421

[14] Linda J. Sax, Kathleen J. Lehman, and Christina Zavala. 2017. Examining the

Enrollment Growth: Non-CS Majors in CS1 Courses. In Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer Science Education

(SIGCSE '17). ACM, New York, NY, USA, 513-518. DOI:

https://doi.org/10.1145/3017680.3017781

[15] Christopher Watson and Frederick W.B. Li. 2014. Failure rates in

introductory programming revisited. In Proceedings of the 2014 conference

on Innovation & technology in computer science education (ITiCSE '14).

ACM, New York, NY, USA, 39-44. DOI:

http://dx.doi.org/10.1145/2591708.2591749

[16] Krissi Wood, Dale Parsons, Joy Gasson, and Patricia Haden. 2013. It's never

too early: pair programming in CS1. In Proceedings of the Fifteenth

Australasian Computing Education Conference - Volume 136 (ACE '13),

Angela Carbone and Jacqueline Whalley (Eds.), Vol. 136. Australian

Computer Society, Inc., Darlinghurst, Australia, Australia, 13-21.

[17] Joshua Sai Yuen, Alex Daniel Edgcomb, and Frank Vahid. 2016. "Will

Students Earnestly Attempt Learning Questions if Answers are Viewable?".

2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana, 2016,

June. ASEE Conferences, 2016.

https://peer.asee.org/31231
https://doi.org/10.1145/3287324.3287466
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/2676723.2677333
https://doi.org/10.1145/1508865.1508971
https://doi.org/10.1145/2899415.2899468
https://doi.org/10.1145/3017680.3017732
https://doi.org/10.1145/3300115.3309525
https://doi.org/10.1145/3017680.3017711
https://doi.org/10.1145/3159450.3159518
https://doi.org/10.1145/3125659.3125695
https://doi.org/10.1145/1145287.1145293
https://doi.org/10.1145/2899415.2899421
https://doi.org/10.1145/3017680.3017781
http://dx.doi.org/10.1145/2591708.2591749

